

Migrating A FileMaker

®

Solution To ServoyTM
A Hands-On Primer

Bob Cusick
bob@clickware.com

Migrating A FileMaker Solution To Servoy: A Hands-On Primer

The goal of this document is to help lead you through the process of rebuilding an existing
FileMaker Pro solution in Servoy. We will go all the way through the process from exploring the
FileMaker solution; to building all the forms and methods; to faithfully reproducing the solution in
Servoy.

I’ll break down the entire process into Chapters that you can take one chapter at a time; and
there will also be versions of the solution that you can import into Servoy at the end of each
chapter. So, grab your favorite beverage, and let’s get started!

For this tutorial, I’m using FileMaker Pro 6.0 on a PC – although it will work exactly the same way
if you’re using a Mac. There's a lot of stuff covered in this tutorial, and if you follow the directions
exactly - it will take you about 8 hours to go through it all.

I suggest you go through this tutorial twice. The first time, follow all the directions - and see how
long it takes you to get through. The second time - you should be able to re-create the solution
in about 2-3 hours. It's as they say - practice makes perfect!

Migrating a FileMaker Solution to Servoy Page 1 of 146

Chapter 1 – Exploring Your FileMaker Solution
Estimated Time To Complete: 30-45 minutes

For the purposes of this tutorial, I’m using the “Contact Management” template solution that
comes with FileMaker Pro 6.0. If you don’t have FileMaker Pro 6.0 – I’ve included a copy of the
file with the download package. If you do have FileMaker Pro 6.0 – then start by creating a new
database:

Choose “New Database…” from the “File” menu and you should see a list of templates.

Choose the “Business” category from the pop-up list and click on “Contact Management”.
Then click “OK”.

Migrating a FileMaker Solution to Servoy Page 2 of 146

Name the file “Contact Management.fp5” and click “Save”.

If you don’t see the listing of templates when you choose “New Database…” – then you have the
preference turned off. Here’s how to make the template list appear: Choose “Preferences ->
Application…” from the “Edit” menu and DO check “Templates in New Database dialog”.

Click “OK” to close the dialog and choose “New Database…” from the “File” menu.

Migrating a FileMaker Solution to Servoy Page 3 of 146

Once you save the template – it should open up right away. Here’s what you should see:

Now that we have the solution we want to convert – let’s examine what’s going on in the
template so we can determine what we need to convert to Servoy, and so we can get a better
understanding of the overall solution. If you’re the sole developer of a solution, then you
probably have a good idea of what data is used where – but let’s go through the process
together – it’s good practice.

Migrating a FileMaker Solution to Servoy Page 4 of 146

Step 1 – Sample Data

The first thing that I do – is to create a sample record – filling out all the fields so that we can
see where the data appears in the current solution.

Once you have a sample record or two, we’ll begin by clicking around the solution to see what it
does (we’re assuming we didn’t write this solution – which we didn’t!).

Migrating a FileMaker Solution to Servoy Page 5 of 146

Step 2 – Clicking Around

There are a couple of different ways you can figure out what’s going on in a solution :

Go into Layout Mode and click the flip-book icon (or use the layout pop-up menu) to navigate
between all the layouts.

Click through the various buttons, tabs, etc. within the solution to get an idea of how it works.

My personal preference is to do both. Going into Layout Mode will show you all the physical
layouts in the file – and in this case – we will want to migrate all of the layouts. However, when
you’re duplicating this process in your Servoy solution – you may find all kinds of layouts that
aren’t needed; or that were created for some long-forgotten purpose.

HOT TIP: Don’t bother migrating the stuff you don’t need anymore.

Once you’ve clicked through the solution to see what the buttons do, and have an idea of how
the solution basically functions, it’s time to get down to work.

Since we’ll be creating a new SQL database for our solution – and one or more data tables to
hold the data – we will focus on duplicating only the data we need to TYPE IN at this point. All
the other fields that may exist in your solution – calculations, globals, summaries – don’t matter.
We’ll deal with those types of data on the Servoy side. The MOST IMPORTANT fields are the ones
that the user has to enter data in.

So, to get a better understanding of the layouts we’re going to convert and the fields they
contain, we’re going to go into Layout Mode and do screen captures of each screen – this also
gives us a “journal” of these layouts for later use.

Let’s take a step-by-step look at how we’re going to accomplish this:

1. Go into Layout Mode.

2. Make sure your window is big enough to see all the elements, and then capture the
screen. You can use your favorite screen capture utility – or if you don’t have a screen
capture utility – then use ALT+Prnt Scrn on the PC or COMMAND+SHIFT+3 on your Mac.

3. Once you have captured the screen, open your favorite word processing program (I’m
using Microsoft Word) – and paste the screen capture (PC) – or drag-and-drop the
captured file (Mac) into the document.

Migrating a FileMaker Solution to Servoy Page 6 of 146

From looking at the list of layouts in this file (from the layouts pop-up menu) – apply this process
for the following layouts:

Form – Main Address
Form – Second Address
Form – Similars
List
Table
Information
Letter
Avery 5160
List Report
Letter: Address Confirmation

Migrating a FileMaker Solution to Servoy Page 7 of 146

We won’t be migrating the “Web” layouts – nor the layouts with the name of “-” (these layouts
are just used as the dividing lines when you’re looking at the layouts in the pop-up menu). In this
tutorial, we’ll focus on migrating the “Form” layouts; the List and the Table layout. We’ll leave the
letters and labels for the next series.

Once you’ve finished capturing the screens – save your document and print it out (if you have a
color printer – DO use the color – it will be helpful later).

Now that we have the printed roadmap of the layouts we want to migrate – and the names of
the fields on each layout – let’s start planning our data structure for the new table(s) we’ll be
creating.

Chapter 2 – (Re) Designing The Data Model
Estimated Time To Complete: 15 minutes

As I mentioned before, we won’t concern ourselves with globals, calculations or summary fields
in the planning of our data model – because Servoy treats these types of fields differently than
FileMaker does.

Global fields in FileMaker are physical columns (fields) in your table (database). In Servoy,
globals are in-memory variables and NOT physical fields in your table - and they're different than
the concept of using any column as a global (as in FileMaker 7). Likewise, calculation fields and
summary fields in Servoy are NOT physical fields – but rather are “virtual” columns that can be
displayed or used in other calculations. We’ll get into more detail about globals, calculations and
summaries a little later when we’re creating the Servoy solution.

By looking at the printed copy of the layouts, you can get an idea of the data fields used in the
solution.

Migrating a FileMaker Solution to Servoy Page 8 of 146

Another thing you’ll want to do at this point – is to open up “Define Fields” from the “File” menu
in FileMaker, and sort the fields by “Type” (by clicking the word “Type” at the top of the list).
This will show you the names of the fields in the existing solution – and give you an idea of the
columns we’ll have to create.

The reason we’re sorting the list by Type rather than by Name is because we’re only concerned
with the fields that are Text, Number, Date, and Time fields. Now print out the field definitions by
clicking the “Done” button and choosing “Print” from the “File” menu.

Migrating a FileMaker Solution to Servoy Page 9 of 146

Choose the option for “Field definitions” from the pop-up menu that currently reads (“Records
being browsed” or “Current record”).

We’ll use this list of fields along with our printed layout list to determine the bare minimum of
fields that will make up our new data model.

Here’s the list of fields we wind up with:

Field Name Type
Contact ID Number
First Name Text
Last Name Text
Company Text
Title Text
Email Text
Notes Text
Image Data Container
Thumbnail Container
Address Type 1 Text
Address Type 2 Text
Street 1 Text
Street 2 Text
City 1 Text
City 2 Text
State Province 1 Text
State Province 2 Text
Postal Code 1 Text
Postal Code 2 Text

Migrating a FileMaker Solution to Servoy Page 10 of 146

Phone 1 Text
Phone 2 Text
Date Created Date
Date Modified Date

Looking at this list of fields – there are a few things that we need to address in the design of our
new data model:

Duplicate field names with numbers after them. Whenever you see fields with a number after
them (i.e. Street 1, Street 2, City 1, City 2, etc.) – this should immediately raise a little red flag in
your mind. Why did the developer choose to have multiple fields that store similar types of data
in the same file instead of creating a related table to hold the information? Is there a good
reason to keep this design, or will it limit our new solution? In this case, since the base solution is
a template file – I’m pretty sure that the developer wanted to keep everything in an easy-to-use
single file design.

This brings up another major difference between FileMaker and Servoy:

In FileMaker 1.x-6.x, each “database” is a single file containing a single “table” of data. In the
world of SQL (and FileMaker 7), a “database” is a “bucket” that can have many tables, scripts
(stored procedures), triggers, functions, user privileges, and other information inside it. We refer
to the objects that hold data as “tables”. It’s not uncommon for a single SQL database to have
dozens (or sometimes hundreds) of individual data tables in them.

A quick terminology note:

In Servoy – you create “solutions.” With FileMaker, you create “databases.”

In Servoy – the “wrapper” (the thing you’re creating) is called a “solution” whereas in FileMaker
the “wrapper” is a “file” (or “database” or also “solution”) that has a single window.

Servoy solutions can have many different forms that reference many different tables; different
physical databases; and/or even remote databases that are running at a different location (such
as at a hosting facility on the Internet).

Keeping these differences in mind – we can design our data in a way that makes the most sense
in terms of future functionality and enforce data normalization (where similar data is stored in a
separate table and referenced by an ID).

Migrating a FileMaker Solution to Servoy Page 11 of 146

Let’s take a look at the differences in these two approaches (flat file versus normalized data) and
determine the impacts of both designs in terms of complexity and functionality.

A schema is the design of your database.

In most cases, you would want to create a normalized schema – a design in which there is a
separate table that stores each type of distinct data. For example, rather than having fields
named “Street 1”, “City 1”, etc. you would have a separate table called Address that would allow
you to add as many addresses as you want – all linked to the contact’s primary key (PK – Contact
ID) via a foreign key (FK - Contact ID).

There may be times, however, that you would want to create a de-normalized structure. Think
about an application in which we will only ever have two addresses and two phone numbers.
Using the de-normalized structure is an easy way to set up the links for Address 1 and Address 2
tabs – whereas using a normalized structure, we need to come up with a way to display the
correct address record on the correct tab. The normalized structure would allow us to add many
more addresses and many more phone numbers and not have to add columns to our table.

It’s also important to consider how you might use the same tables in another solution.
Remember – Servoy is simply the user interface – it’s NOT the database. You could create this
particular Contact Management solution as a standalone – but you may also want to use this
same contact data again in a completely different solution where you would require more than
one address and/or phone number. Because of this possibility, we’re going to use the normalized
data approach in our solution – both because it’s flexible, and because it follows good database
design.

So – how are we going to show data from one address record on one tab – and then another
data record on another tab? And what about the phone numbers? What if we want to use a

Migrating a FileMaker Solution to Servoy Page 12 of 146

specific type of phone number (such as “Work” or “Home”) on a letter or a form? All great
questions! Let’s look more closely at some of these considerations.
We know that the primary key (the unique identifier) for each contact is the Contact ID column –
and we know that each address also has a foreign key (Contact ID) that we can use to link the
contact and the address together. However, this doesn’t solve our problem – because both tabs
would show the same address – the FIRST address for that contact.

We need to create a new identifier that will identify both the Contact ID and also which address
number a particular address is – so we can show it on the correct tab. To accomplish this – we’re
going to add a column to the Address table called Address Number. This will be an integer –
representing the number of the address we want to display. We can then create a relation that
looks at both the Contact ID and the Address Number (stored in a global) that will allow us to
access the correct record on each Address tab.

We can accomplish the same type of methodology with our phone numbers. We’ll create a
relation that looks at both the Contact ID and the Phone Type to display the correct item on our
forms. Now that we’ve outlined the data needs of our application – and we’ve come up with a
way to display that data – we’ll get busy creating our solution.

Migrating a FileMaker Solution to Servoy Page 13 of 146

Chapter 3 – Creating the SQL Database
Estimated Time To Complete: 20 minutes

In Servoy – the basis of every solution is one or more named database connec ions. t

These named database connections simply “point” to a particular database. The database can be
on your local hard drive; on your LAN; on your WAN; or hosted at an Internet Provider. The
physical location of the database and the database vendor don’t matter. You can have
connections to Sybase databases; Firebird databases; MySQL databases; Microsoft SQL Server
databases; and Oracle databases – all at the same time in the same solution. You can even
display data from more than one different vendor’s database (i.e. Sybase and Oracle) and create
portals or reports showing data from completely different databases running on two totally
different machines!

In order for this whole thing to work – you must start with a database. This can be an existing
database – or you can create a new database from scratch. Because different database vendors
have many, many different options for database settings, if you’re going to create a new
database – you need to create it outside of Servoy. If your database already exists, all you
need is a username and password to connect to it, the IP address (and sometimes the port – if
it’s not running on the “default” port), and the name of the database. With these four pieces of
information – you’re ready to build your solution.

Since this is a tutorial – we’ll take a look at how to create a new database in two different
vendor’s databases: Firebird and Sybase iAnywhere ASA.

Creating a new Firebird Database

Versions of Servoy prior to 2.0, shipped with an open source database called Firebird (the open
source version of Borland’s Interbase). Servoy shipped this “default” database as a way to ensure
that users of Servoy could get started “right out of the box” without the need to install and
configure their own SQL database. If you’re using Firebird with Servoy (yes, you CAN use Firebird
as well as Sybase with Servoy at the same time!) – creating a new database is very straight
forward:

Migrating a FileMaker Solution to Servoy Page 14 of 146

Locate your Servoy folder.
Double-click on the “database” folder.
Copy the file called “EMPTY.GDB”.

Paste.

Migrating a FileMaker Solution to Servoy Page 15 of 146

Rename the “Copy of EMPTY.GDB” to a new name. In our case, we will call our database
“CONTACT_MGMT.GDB”.

If you’re using Firebird – that’s it! You’ve now created an empty database without any data
tables in it.

Creating a new Sybase iAnywhere ASA database

If you are using Servoy 1.0 to Servoy 2.0RC9 – USE FIREBIRD and the Instructions above unless
you already have a separate license for iAnywhere ASA.

Beginning with Servoy 2.0 – the default database that ships with the product was changed from
Firebird to Sybase iAnywhere ASA (Adaptive Server Anywhere). iAnywhere ASA is an enterprise
class, scalable and extremely high performance database. The database files are also binary
compatible between platforms – which means you can use a database file developed on a
Macintosh directly on a PC without any conversions or data imports. Setting up a new Sybase
database, and linking it to the Servoy application is a very straight-forward process – but not as
simple as copying and pasting!

Migrating a FileMaker Solution to Servoy Page 16 of 146

To create a new Sybase database – we’re going to use the free utility called “Sybase Central”. If
you don’t have a copy of Sybase Central – you can download it as part of the “SQL Anywhere
Studio v9” from http://www.ianywhere.com/downloads/index.html.

Open up Sybase Central and choose “Adaptive Server Anywhere 9” from the Tools menu and
then select “Create Database…” from the context menu.

This will start up a wizard that will help you to configure the new database.

Migrating a FileMaker Solution to Servoy Page 17 of 146

http://www.ianywhere.com/downloads/index.html

There are LOTS of different settings available when creating a new Sybase iAnywhere ASA
database – and using this wizard – I’ll help you through the choices.

Click “Next” to continue.

Click “Next”.

Click the “Browse…” button and locate the “database” folder of your Servoy folder.

Migrating a FileMaker Solution to Servoy Page 18 of 146

Give your database the name of CONTACT_MGMT.

Click “Save” to dismiss the dialog and return to the wizard.

Click “Next” to continue.

You’ll be asked whether you want to create a transaction log. A transaction log will save every
action taken to every able. t

Migrating a FileMaker Solution to Servoy Page 19 of 146

So every time you create a record, update a record, or delete a record – the transaction will be
saved in a log file. This option can help you re-create your data in case something goes wrong;
allow you to replicate your data to a different Sybase database; and provides much better
performance of the database itself.

Click “Next”. You’ll now be asked if you want to create a mirrored log file. This does just what it
sounds like – it will keep an identical copy of the log file in a different location. In most cases –
you won’t want to make a mirror copy of the log file as it will affect the performance of your
database.

Click “Next” to continue.

Migrating a FileMaker Solution to Servoy Page 20 of 146

On this screen – YOU MUST choose to “Install jConnect meta-information support”. This is
because Servoy uses JDBC to connect to the Sybase iAnywhere ASA database. If you do not
check this option – YOU WILL NOT BE ABLE TO CONNECT to your database.

Click “Next”. This screen is where you can specify database-specific features.

You can choose to natively encrypt the data in your database; ignore trailing blanks when using
comparisons (for example, you have “Bob “ and you want the database to ignore the trailing
space – similar to “trim” in FileMaker); and case sensitivity for all names and values.

The default for Sybase is to use case in-sensitive values. This means that when your users
perform a search for “Bob” that entering “bob” or “bOb” or “boB” will still find the value “Bob”.
This is DIFFERENT than Firebird – which IS case sensitive. Case insensitivity is really a great
feature – and I recommend you leave this option Unchecked.

Migrating a FileMaker Solution to Servoy Page 21 of 146

Click “Next”. On this screen you can choose the database page size to use (the size, in bytes that
the database uses to hold data “pages”). Unless you have a very good reason for changing it –
keep the default size of 2048.

Click “Next”. This screen allows you choose the “collation” or the sorting options. You can choose
from a large selection of foreign languages or even supply your own collation if you want to. The
discussion of using different collations is way outside the scope of this tutorial (for more
information – check out the iAnywhere web site). For now, click “Use the following supplied
collation:” and choose “UTF8”. This option will work cross-platform and is also the same setting
used when you setup a new Sybase ASA connection from within Servoy.

Click “Next”. This final screen asks you whether you want to connect to the database (in Sybase
Central) after creation. If you choose to connect – you can begin creating your tables and
defining your columns right way – within Sybase Central.

Migrating a FileMaker Solution to Servoy Page 22 of 146

For now, DON'T check the “Connect to the new database” option and click “Finish”.

Congratulations! You now have a new, empty database.

However, we’re not quite done with the configuration yet – we need to “tell” the
servoy_repository that it should start up our new database when it starts up. To do that – we
need to modify one more file. Exit Sybase Central – and locate your “Servoy” folder.

Migrating a FileMaker Solution to Servoy Page 23 of 146

Double-click the “sybase_db” folder and open the file called “sybase.config” with a text editor so
we can add our new database “contact_mgmt.db” to the list of databases Servoy should open
when launched.

Migrating a FileMaker Solution to Servoy Page 24 of 146

Because we’ve saved our new database in the “database” folder – don’t forget to include
“database/” (no quotes) in front of the database name.

Save and close the file.

OK – now we’re all ready to begin building our Servoy solution.

Migrating a FileMaker Solution to Servoy Page 25 of 146

Chapter 4 – Creating the Servoy Solutions and Data Tables
Estimated Time To Complete: 20 minutes

It’s time to launch Servoy and get started with our solution. The first thing we need to do is to
create a connection to our new database. After that, we’ll create our solution and then create the
data tables and basic forms for our solution.

Once you’ve double-clicked on the Servoy icon and Servoy has started – click the “Cancel” button
when you see the “Select Solution” dialog – and choose “Preferences” from the “Edit” menu.
Click on the tab called “DB Servers”.

If you’re using a Firebird database – then choose “FireBird” from the popup menu and you’ll see:

The “Server name” is the name YOU want to use to refer to the connection. Let’s use
“contact_mgmt” for the Server name.

Migrating a FileMaker Solution to Servoy Page 26 of 146

Leave the default settings for the user name and password (unless you’ve changed the master
password and username). The default User name is “sysdba” and the default Password is
“masterkey”.

In the “Database Server URL” line, you need to change “localhost” to the IP address of your
FireBird server (or leave it “localhost” if you have it on the same machine), and then replace
“<database_name>.gdb” with “CONTACT_MGMT.gdb” (no quotes).

You can leave the Catalog and Schema set to “<none>” – and click “OK.”

If you didn’t get any errors – your connection is now set up and valid. If you did get an error –
make sure your User name and Password are correct.

If you’re using a Sybase iAnywhere ASA database – then choose “Sybase ASA” from the popup
menu and you’ll see:

The “Server name” is the name YOU want to use to refer to the connection. Let’s use
“contact_mgmt” for the Server Name.

Leave the default settings for the user name and password (unless you’ve changed the master
password and username). The default User name is “DBA” and the default password is “SQL”.

In the “Database Server URL” line, you need to change “localhost” to the IP address of your
Sybase server (or leave it “localhost” if you have it on the same machine), and then replace
“<database_name>” with “CONTACT_MGMT” (no quotes).

You can leave the Catalog and Schema set to “<none>” – and click “OK.”

Migrating a FileMaker Solution to Servoy Page 27 of 146

If you didn’t get any errors – your connection is now set up and valid. If you did get an error –
make sure your User name and Password are correct.

You’ll notice that after your connection is added – red type appears at the bottom of the dialog
saying that changes are effective only after restart. So, restart Servoy and we’ll begin creating
our solution.

Migrating a FileMaker Solution to Servoy Page 28 of 146

Once you’ve restarted Servoy – click the “Cancel” button when you see the “Select Solution”
dialog – and then choose “New Solution” from the “File” menu. Enter contact_mgmt (spaces
aren’t allowed in the solution name) and click OK.

Once you’ve created the solution – the first thing that Servoy assumes you want to do is to
create a form that will display data. Choose your connection called “contact_mgmt” from the
“Using Server” pop-up menu. Because we don’t have any data tables yet, there will be nothing
that appears in the list box below “Using existing table”.

Instead, we’ll create our first table – contact. Enter “contact” (no quotes) in the field below “New
Table”, make sure the radio button next to “New Table” IS selected and click “OK”.

Migrating a FileMaker Solution to Servoy Page 29 of 146

The next dialog is called the “Define Dataproviders” dialog and is equivalent to the dialog “Define
Fields” in FileMaker. You’ll see a list of all your database connections on the left hand side (those
databases that aren’t currently available are marked with a red “x”) – and if you see a “+” next
to the connection name – you can expand the connection to show all the data tables in the
database pointed to by the connection name.

Our connection name is “contact_mgmt” – and you’ll notice that Servoy created a new table for
us called “contact” and added a new field called “contactid” – that is an integer and marked as
the Primary Key.

Change “contactid” to “contact_id” and add the remaining fields to match this list:

Migrating a FileMaker Solution to Servoy Page 30 of 146

BEFORE YOU CLICK THE “APPLY” BUTTON – MAKE SURE that all the columns are spelled
correctly and that you have set the data lengths on the TEXT fields correctly. This is because the
Define Dataproviders dialog will NOT let you RENAME columns or change their lengths – you
need to use Sybase Central (for Sybase ASA) or another 3rd party tool to access the database
directly – once you click the “Apply” button. The reason for this is simple. Suppose you were
connecting to a database that you didn’t personally create. Now let’s also suppose that same
database is being used by a PHP application to put data up on the web. What do you think would
happen if you just started changing the names of fields?? Yep, the web application would stop
working. This is why you need to use 3rd party tools. if you want to make those kinds of changes
– you need to “mean it” – because it may affect other applications and/or stored procedures, etc.
etc.

Once you are happy with the spellings and data lengths of the fields – DO click the “Apply”
button, and Servoy will create a form for you based on the contact table you just created.

DO click the “Fill name property” - I’ll explain the functionality of this later. You can choose one
or more fields to add to the new form. You can even choose discontinuous fields by holding down
the CTRL key. To start with – we’re going to add all the fields, so click on a field and press CTRL-
A (PC) or COMMAND-A (Mac) to select all the fields, then click “OK.”

Migrating a FileMaker Solution to Servoy Page 31 of 146

Servoy will place all the fields on the form – and place their labels to the left of the fields.

If you exit the Designer mode – press CTRL-L (PC) or COMMAND-L (Mac) – you can start adding
and deleting records – all with no SQL programming!

Next, we’re going to create the other data tables we need for our solution: Address and Phone.

Migrating a FileMaker Solution to Servoy Page 32 of 146

Go back into Designer mode – and choose “Dataproviders…” from the “Tools” menu:

Click on the “contact_mgmt” database connection – and click the “New Table” button on the
bottom left of the screen. When you’re prompted to enter the name of the new table – enter
“Address” (no quotes). Change “addressid” to “address_id” and add the remaining fields to match
this list:

Migrating a FileMaker Solution to Servoy Page 33 of 146

Now we’re going to create our last table: “Phones.” Click on the “contact_mgmt” database
connection again – and click the “New Table” button on the bottom left of the screen. When
you’re prompted to enter the name of the new table – enter “Phone” (no quotes). Change
“phoneid” to “phone_id” and add the remaining fields to match this list:

Now that we’re finished defining the tables to hold our data – we can begin to build the
user interface.

Chapter 5 – Building the User Interface – Part 1
Estimated Time To Complete: 1.5 - 2 hours

The first thing we’re going to do in building the user interface, is make sure that we have all of
the graphical elements we need. There are native elements we can create in Servoy – all the
lines, type, etc. – but there are some elements like the “New”, “Delete” and “Find” buttons and
the “Form”, “List” and “Table” buttons that we’ll need to create graphics for.

To create the button graphics, I went into Browse Mode in the FileMaker solution – and captured
the screen.

Then I opened the screen capture in Adobe Photoshop (you can use your favorite graphics
editor); used the lasso tool to select each of the button areas; copied the graphic; pasted it into a
new document; chose “Save For Web” and then saved the pasted graphic in .jpg format. I did
the same thing for the “Form”, “List” and “Table” graphics (in both grey and purple).

Migrating a FileMaker Solution to Servoy Page 34 of 146

After capturing all the graphics – I saved the .jpg versions to a separate folder called “images”.

To make the graphics available in my Servoy solution – I use the image tool to import the entire
folder of items into the solution. You will need to create images for the “New” button; “Delete”
button; “Find” button; “Email” button; as well as the form button, list button and table button –
in both grey and purple. Once you’ve captured everything and turned them into .gif or .jpg
images – you’re ready to import them into the image library so you can use them in your
solution.

Here’s how to import the images:

Capture all your images into a folder called “images” – make sure they’re in .gif or .jpg format.

Go into the Designer mode in your Servoy solution.

Migrating a FileMaker Solution to Servoy Page 35 of 146

Click the Image tool in the toolbar – or choose “Place Image” from the “Elements” menu.

Click the “Import directory” button – and choose your “images” folder.

Click the “OK” button to import all the images into your Servoy solution.

Migrating a FileMaker Solution to Servoy Page 36 of 146

Then click the “Cancel” button to dismiss the Media dialog.

For those of you that don’t want to take the time to capture all the elements – you can simply
import the “images” folder from the download files. I’ve included a bunch of other images (like
rollover images, etc. – plus all the properties assume graphics of a certain size – so it’s a good
idea to import the images folder from the download files.

Now we’ll create and place all of the elements of the Main Address form. Remember – our goal is
to make our Servoy solution resemble the FileMaker solution as closely as possible – so we’ll
place our objects using the size and location properties as well as the foreground and
background (color) properties. If you don’t want to create and place all of the objects – there’s
an easier way. With Servoy you can have multiple “Releases” of a single solution. Although you
can only edit the latest (most recent) release, you can easily create many different releases as
you go.

If you want “instant” results – you can import the file called “contact_mgmt_02.servoy” (in the
“Builds” folder of the download files). Here’s how to do it:

Choose “Repository…” from the “File” menu
When you see the dialog “There is currently an open solution, close and continue?” –
click the “OK” button.

Migrating a FileMaker Solution to Servoy Page 37 of 146

You will see the Repository screen appear – click on the “Repository” at the top – and then
click the “Import” button.

In the “Import” dialog – CHECK the option for “Activate release after import” and click “Start”.

Migrating a FileMaker Solution to Servoy Page 38 of 146

Locate the “Builds” folder in the download and double-click the file “contact_mgmt_02.servoy”
(or select the file and click “Open”).

You will see a dialog that tells you the style “servoy” already exists – and asks if you want to
overwrite it – click the “Skip” button.

Migrating a FileMaker Solution to Servoy Page 39 of 146

The next dialog is very interesting. It says that there is “version information” available – and asks
if you want to “merge” the imported solution with the imported version.

This is a very powerful feature of Servoy. Since a Servoy solution is not a database – just the
user interface – you can have multiple people working on the same solution (even offline) – and
then merge all the versions together. For example – if developer A worked only on forms 1-3 and
developer B worked on forms 4-7 – they could “merge” their versions together to create a new
release with BOTH of their work combined together.

For now, just accept the defaults – “do not merge” and “overwrite local forms with import
version” – and click the “OK” button.

In a few seconds, you’ll see “successfully completed”. Click the “OK” button to dismiss the dialog
and return to the Repository screen.

Migrating a FileMaker Solution to Servoy Page 40 of 146

When you click on the “+” next to your contact_mgmt solution on the Repository screen – you’ll
see that there is a new release (R2) with a little black “A” on it – signifying it’s the “active”
release.

You can now click the “OK” button and then choose “Open Solution” from the “File” menu to
open up the new release of the contact_mgmt solution.

For those of you that want to place the elements manually – follow the chart of elements and
properties below to build and place all the elements:

Object Type Property Value

Width 612
View Record view (locked)
StyleName <none>
TitleText Contact Main
Background color= Red:255, Green:255, Blue:255

Form

Name contact_main
Body Part Height 454

Size 612,15
Location 0,19
Anchors Top, Left, Right

Rectangle
Top line behind
“Contacts”

Border Line: size=1, color= Red:245, Green:243, Blue:255

Migrating a FileMaker Solution to Servoy Page 41 of 146

Foreground color= Red:245, Green:243, Blue:255
Background color= Red:245, Green:243, Blue:255
Size 130,20
Location 19,14
HorizontalAlignment Left
Font Verdana, 24pt, Bold
Transparent True (checkbox)
Foreground Color = Red:204, Green:204, Blue:204
Anchors Top, Left

Label
Contacts Label

Text Contacts
Size 95,20
Location 386,16
HorizontalAlignment Left
Font Verdana, 9pt, Plain
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:153
Anchors Top, Right

Label
View Contact List
text button

Text View Contact List
Size 14,20
Location 486,16
HorizontalAlignment Center
Font Verdana, 9pt, Plain
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:153
Anchors Top, Right

Label
Dividing line
between text
buttons

Text |
Size 84,20
Location 509,16
HorizontalAlignment Left
Font Verdana, 9pt, Plain
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:153
Anchors Top, Right

Label
Address Labels
text button

Text Address Labels
Size 56,26
Location 19,45
HorizontalAlignment Left
VerticalAlignment Center
ImageMedia btn_new.jpg
RollOverImageMedia btn_new_selected.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Left

Label
“New” button

Border Empty – 0,0,0,0
Size 66,26
Location 108,48
HorizontalAlignment Left
VerticalAlignment Center
ImageMedia btn_delete.jpg

Label
“Delete” button

RollOverImageMedia btn_delete_selected.jpg

Migrating a FileMaker Solution to Servoy Page 42 of 146

MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Left
Border Empty – 0,0,0,0
Size 60,22
Location 201,48
HorizontalAlignment Left
VerticalAlignment Center
ImageMedia btn_find.jpg
RollOverImageMedia btn_find_selected.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Left

Label
“Find” button

Border Empty – 0,0,0,0
Size 38,26
Location 435,51
HorizontalAlignment Center
VerticalAlignment Center
ImageMedia btn_purple_form.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Right

Label
Purple “form”
button

Border Empty – 0,0,0,0
Size 38,26
Location 475,51
HorizontalAlignment Center
VerticalAlignment Center
ImageMedia btn_grey_list.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Right

Label
Grey “list” button

Border Empty – 0,0,0,0
Size 515,51
Location 38,26
HorizontalAlignment Center
VerticalAlignment Center
ImageMedia btn_purple_table.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Right

Label
Grey “table”
button

Border Empty – 0,0,0,0
Size 23,24
Location 578,49
HorizontalAlignment Left
VerticalAlignment Center

Label
“help” button

ImageMedia btn_help.jpg

Migrating a FileMaker Solution to Servoy Page 43 of 146

RollOverImageMedia btn_help_selected.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Right
Border Empty – 0,0,0,0
Size 612,7
Location 0,76
Anchors Top, Left, Right
Border Line: size=1, color= Red:204, Green:204, Blue:204
Foreground color= Red:153, Green:153, Blue:204

Rectangle
Purple rectangle
below buttons

Background color= Red:153, Green:153, Blue:204
Size 612,1
Location 0,103
Anchors Top, Left, Right
Border Line: size=1, color= Red:221, Green:221, Blue:221
Foreground color= Red:221, Green:221, Blue:221

Rectangle
Grey line below
purple dividing line

Background color= Red:221, Green:221, Blue:221
Size 420,20
Location 13,85
HorizontalAlignment Left
Font Verdana, 18pt, Bold
Transparent True (checkbox)
Foreground Color = Red:102, Green:102, Blue:153
Anchors Top, Left

Label
Merge text for first
and last name

Text %%first_name%% %%last_name%%
Size 220,20
Location 371,88
HorizontalAlignment Left
Font Verdana, 12pt, Bold
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:204
Anchors Top, Right

Label
Merge text for
company name

Text %%company%%
Size 40,19
Location 440,126
HorizontalAlignment Right
Font Verdana, 9pt, Plain
Transparent True (checkbox)
Foreground Color = Red:204, Green:204, Blue:204
Anchors Top, Right

Label
“Image” field label

Text Image
Size 111,109
Transparent True (checkbox)
Location 483,126
HorizontalAlignment Center
Transparent True (checkbox)
Foreground Color = Red:0, Green:0, Blue:0
Anchors Top, Left, Right
DisplayType ImageMedia

Field
Image

Border Line: size=1, color= Red:238, Green:238, Blue:238

Migrating a FileMaker Solution to Servoy Page 44 of 146

Size 80,19
Location 20,126
HorizontalAlignment Right
Font Verdana, 11pt, Plain
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:204
Anchors Top, Left

Label
“First Name” field
label

Text First Name
Size 277,19
Transparent True (checkbox)
Location 107,126
HorizontalAlignment Left
Font Verdana, 11pt, Plain
Margin 1,3,1,1
Foreground Color = Red:0, Green:0, Blue:0
Anchors Top, Left, Right
DisplayType TextField

Field
First Name

Border Line: size=1, color= Red:238, Green:238, Blue:238

For the rest of the fields – just copy/paste the first name field and label and change the location
and the label text.

Location 20,144 Label
“Last Name” field
label

Text Last Name

Location 107,144 Field
Last Name DataProvider last_name

Location 20,162 Label
“Title” field label Text Last Name

Location 107,162 Field
Title DataProvider title

Location 20,180 Label
“Company” field
label

Text Company

Location 107,180 Field
Company DataProvider company

Location 40,198 Label
“Phones” field
label

Text Phones

Location 107,198 Field
Phones DataProvider company (FOR NOW – will change later!)

Location 40,216 Label
“Email” field label Text Email

Location 127,216 Field
Email DataProvider email

Location 20,254 Label
“Notes” field label Text Notes

Location 107,254
DataProvider notes
Size 467,57
DisplayType TextArea

Field
Notes

Scrollbars Vertical: when needed, Horizontal: never

Migrating a FileMaker Solution to Servoy Page 45 of 146

Size 23,24
Location 43,215
HorizontalAlignment Center
VerticalAlignment Center
ImageMedia btn_email.jpg
RollOverImageMedia btn_email_selected.jpg
MediaOptions Crop
Transparent False (checkbox)
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Left

Label
“email” button

Border Empty – 0,0,0,0

NOTE: On each of the graphic buttons - double-click the property mediaOptions and set the Scale
method “Reduce” and DO check the checkbox “Keep aspect ratio”:

If you chose to place all the elements yourself – GOOD JOB! Take a breather. We’ll continue in
the next section by creating the forms that will make up the tabpanel at the bottom of the screen
to display the Main Address, Second Address, and Related Contacts.

If everything came out correctly – your data entry screen should look like this:

Migrating a FileMaker Solution to Servoy Page 46 of 146

Migrating a FileMaker Solution to Servoy Page 47 of 146

Chapter 6 – Building the User Interface – Part 2
Estimated Time To Complete: 1.5 hours

We’re now going to build the forms that will show up in the tabpanel control at the bottom of the
main screen. In Servoy, you don’t have to duplicate the contacts screen and draw “fake” tabs –
Servoy has a native tabpanel object that we can use to show different forms – and still have a
SINGLE “Contacts” screen.

Let’s start by making a new form – select “New Form” from the “File” menu – choose the
“contact_mgmt” server, none for the style, and choose the “Address” table.

Name the form “tab_address_main” (no quotes) – and click the “OK” button.

Migrating a FileMaker Solution to Servoy Page 48 of 146

When you see the “Specify field(s)” dialog – DO NOT CHOOSE ANY FIELDS and just click the
“OK” button.

On the new form you created, set the following properties:

Object Type Property Value

Width 612
ShowInMenu FALSE (checkbox – UNCHECKED)
View Record view (locked)
Scrollbars Vertical: never, Horizontal: never
StyleName <none>
Controller <none>
TitleText Address Main

Form

Name tab_address_main
Height 120 Body Part
Background Color = Red:245, Green:243, Blue:255

Migrating a FileMaker Solution to Servoy Page 49 of 146

Place the Street and City fields (copy from the contact_main screen and change the dataProvider
property to the correct fields. Here’s the exact settings if you’re trying to set them yourself:

Object Type Property Value

Size 80,19
Location 22,22
Transparent TRUE (CHECK checkbox)
HorizontalAlignment Right
Font Verdana, 11pt, Plain
Transparent True (checkbox)
Foreground Color = Red:153, Green:153, Blue:204
Anchors Top, Left

Label
“Street” field label

Text Street
Size 277,19
Transparent FALSE (UNCHECK checkbox)
Location 109,22
HorizontalAlignment Left
Font Verdana, 11pt, Plain
Foreground Color = Red:0, Green:0, Blue:0
Background Color = Red:255, Green:255, Blue:255
Anchors Top, Left
DisplayType TextField
Name street
Margin 1,3,1,1
DataProvider street

Field
Street

Border Line: size=1, color= Red:238, Green:238, Blue:238

For the rest of the fields – just copy/paste the street field and label and change the location, size
and the label text.

Location 40,198
Size 80,19

Label
“City” field label

Text City
Location 109,40
Size 277,19
Name city

Field
City

DataProvider city
Location 2,58
Size 100,19

Label
“State/Province”
field label Text State/Province

Location 109,58
Size 117,19
Name state_province

Field
state_province

DataProvider state_province
Location 232,58
Size 70,19

Label
“Postal Code” field
label Text Postal Code

Location 309,58
Size 77,19
Name postal_code

Field
postal_code

DataProvider postal_code
Label Location 407,22

Migrating a FileMaker Solution to Servoy Page 50 of 146

Size 90,19 “Address Type”
field label Text Address Type

Location 492,22
Size 101,19
Name address_type
DataProvider postal_code

Field
address_type

Anchors Top, Left, Right
Size 187,19
RoundedRadius 10
Location 407,45
Background Color = Red:255, Green:255, Blue:255
Foreground Color = Red:221, Green:221, Blue:221

Round
Rectangle
“Swap” button

Name btn_swap
Location 411,45
Size 180,19
Text Swap with Second Address
Font Verdana, 9pt, Plain

Label
“Swap” button

Name lbl_swap

Now we have the “Main Address” tab – and now to make the “Second Address” tab – we’re
simply going to DUPLICATE this existing form and rename it. Choose “Duplicate Form” from the
“File” menu – and call the new form “tab_address_second” (no quotes):

On the new form you created, set the following properties:

Object Type Property Value

ShowInMenu FALSE (checkbox – UNCHECKED)
View Record view (locked)
Scrollbars Vertical: never, Horizontal: never
StyleName <none>
Controller <none>
TitleText Address Second

Form

Name tab_address_second

Migrating a FileMaker Solution to Servoy Page 51 of 146

Now we have the two address tabs – and now we’re going to make the “Similars” tab. Again,
we’re simply going to DUPLICATE this existing form and rename it. Choose “Duplicate Form”
from the “File” menu – and call the new form “tab_similars” (no quotes):

On the new form you created, set the following properties:

Object Type Property Value

ShowInMenu FALSE (checkbox – UNCHECKED)
View Record view (locked)
Scrollbars Vertical: never, Horizontal: never
StyleName <none>
Controller <none>
TitleText Similars Tab
TableName contact

Form

Name tab_similars

You can DELETE all the fields and labels on this form (for now). We’re going to depart from the
FileMaker functionality here – and we’re going to create another tabpanel that has another form
(in list view) to display all the matching similar contacts.

We could just use a portal here – but then we’d have to do things the FileMaker way – create
calculations that trap for each value possible in the radio button list, etc. Since this is Servoy –
and we can “tell” list views to find and sort any way we want – this is going to be a LOT easier to
implement, much more flexible, and very easy to code (as we’ll see in the next section).

Migrating a FileMaker Solution to Servoy Page 52 of 146

Let’s create another new form called “list_similars.” Choose “New Form” from the “File” menu –
with the following settings:

Click the “OK” button.

Migrating a FileMaker Solution to Servoy Page 53 of 146

Once you’ve created the form – don’t choose any fields – click the “OK” button:

Migrating a FileMaker Solution to Servoy Page 54 of 146

Great! You should see something like this:

On the new form you created, set the following properties:

Object Type Property Value

useSeparateFoundset TRUE (checkbox –CHECKED)
ShowInMenu FALSE (checkbox – UNCHECKED)
Width 612
View List view (locked)
Scrollbars Vertical: when needed, Horizontal: never
StyleName <none>
Controller <none>
TitleText Similars List
TableName contact

Form

Name list_similars
Height 20 Body Part
Background Color = Red:255, Green:255, Blue:255

Migrating a FileMaker Solution to Servoy Page 55 of 146

Now we’re going to add two labels to display the data.

Yep, labels!

In Servoy, you can assign a dataProvider to any object – so we’re going to use labels. With labels
(as opposed to fields) – if the text is too long to fit in the width of the label – it will automatically
display an ellipse (…) at the end – without any programming. Because we’ve set the vertical
scrolling to “when needed” – we need to allow for a 20 pixel wide scrollbar – that will appear
when necessary. So we should keep the “company” label at least 20 pixels from the right side of
the form.

Add a label (or copy/paste from another form) and set the following properties:

Object Type Property Value

Size 350,20
Location 8,0
HorizontalAlignment Left
Font Verdana, 12pt, Bold
Transparent True (checkbox CHECKED)
DisplayTags True (checkbox CHECKED)
Foreground Color = Red:102, Green:102, Blue:153
Anchors Top, Left

Label
Contact Name

Text %%first_name%% %%last_name%%
Size 250,20
Location 338,0
HorizontalAlignment Right
Font Verdana, 10pt, Bold
Transparent True (checkbox CHECKED)
DisplayTags True (checkbox CHECKED)
Foreground Color = Red:153, Green:153, Blue:204
Anchors Top, Right

Label
Contacts Label

Text %%company%%

Migrating a FileMaker Solution to Servoy Page 56 of 146

Now that we have this form created – we can go back to the “tab_similars” form and add the
tabpanel to display it.

From the “Window” menu – choose “tab_similars”. Click on the tabpanel tool – and when the “”
dialog displays – choose the form “nonrelated.list_similars”:

Migrating a FileMaker Solution to Servoy Page 57 of 146

Once the tabpanel is placed – change the properties of the tabpanel to the following:

Object Type Property Value

Size 612,86
Location 0,34
TabOrientation HIDE
Font Verdana, 10pt, Plain
Transparent FALSE (checkbox UNCHECKED)
Background Color = Red:255, Green:255, Blue:255

Tabpanel
list_similars

Anchors Top, Left, Right, Bottom

Now we need to add the label and the field (with valuelist) for the options on the tab. First,
choose “Dataproviders…” from the “Tools” menu – and click on the “Globals” tab. Globals in
Servoy are IN-MEMORY VARIABLES and NOT physical columns in your database. You can define
Globals in the Dataproviders dialog, OR in the Method Editor (we’ll do that later). Once you’ve
clicked on the “Globals” tab – click the “New” button and enter “gSimilarBy” (no quotes) and
choose the return type of “TEXT” (leave the “Default value”empty):

Migrating a FileMaker Solution to Servoy Page 58 of 146

Now add another global called “gAddressNum” with an “INTEGER” type; one more global called
“gConst01” with a type of “INTEGER” and a Default value of “1”; and a “gConst02” also with a
type of “INTEGER” and a Default value of “2” (no quotes):

Click “OK” and add a label with the following properties:

Object Type Property Value

Size 169,19
Location 197,6
Font Verdana, 9pt, Plain
Transparent TRUE (checkbox CHECKED)
Foreground Color = Red:153, Green:153, Blue:204
Anchors Top, Right

Label
Explanation text

Text Show Contacts With the Same:

Migrating a FileMaker Solution to Servoy Page 59 of 146

Next, we’re going to add the global field we just created – and attach a value list to it. Add a field
by choosing “Place field…” from the “Elements” menu – and choose the global field
“globals.gSimilarBy”.

Set the properties as follows:

Object Type Property Value

Transparent TRUE (checkbox CHECKED)
Scrollbars Vertical: never, Horizontal: never
DisplayType CHECKBOXES
Anchors Top, Right
Font Verdana, 9pt, plain
Foreground Color = Red:153, Green:153, Blue:204
Size 228,20
Location 371,5

Label
Explanation text

Border Empty

Migrating a FileMaker Solution to Servoy Page 60 of 146

Once you’ve set the properties, it’s time to attach the value list. Double-click the blank space next
to the “valueList” property – and click the “New” button. Name the value list “Similar_By” and in
the “Custom Values” enter:

Name
Company
City

Then click the “OK’ button.

Migrating a FileMaker Solution to Servoy Page 61 of 146

You’ll see your new value list show up:

Migrating a FileMaker Solution to Servoy Page 62 of 146

Your form should look like this:

Now that we have the form created – let’s add some code so that our solution will work like the
FileMaker solution. We’re going to create a new method so that when the user goes to the
“Related Contacts” tab and changes one of the radio button criteria – the search will be
performed and the text on the label will show the number of matches.

Open up the Method Editor (CTRL+SHIFT-M or choose it from the “Tools” menu). Click on the
tab_similars form and create a new method named search_similars:

Migrating a FileMaker Solution to Servoy Page 63 of 146

We’re going to do a search on the list_similars form – but we’re creating the method on
the tab_similars form because that’s where the control is.

Here’s the code:

//set up variables with each piece of potential data

var contactId = forms.contact_main.contact_id;
var name = forms.contact_main.last_name;
var company = forms.contact_main.company;
var city = forms.contact_main.gconst01_to_address.city;

//search the contact_main
forms.list_similars.controller.find();

if(globals.gSimilarBy == 'Name')
{
 forms.list_similars.last_name = '#%' + name + '%';
}
else if(globals.gSimilarBy == 'Company')
{
 forms.list_similars.company = '#%' + company + '%';
}
else if(globals.gSimilarBy == 'City')
{
 forms.list_similars.gconst01_to_address.city = '#%' + city + '%';
}

forms.list_similars.contact_id != contactId;

var numFound = forms.list_similars.controller.search(true, false);

if(numFound > 0)
{
 //a match was found - update the label text

 forms.contact_main.elements.tabs_70.setTabTextAt(3, 'Related Contacts: '
 + numFound + ' by ' + globals.gSimilarBy);
}
else
{
 //none found - reset the label text

 forms.contact_main.elements.tabs_70.setTabTextAt(3, 'Related Contacts');
}

This method (or script) looks at the data in the global gSimilarBy and then sets the find
criteria (like a Set Field command would in a FileMaker script). The search is performed – and
then based on the number of records found – we update the text on the tab.

IMPORTANT NOTE: JavaScript IS case-sensitive! Make sure you reference objects and call
functions with the exact, case-sensitive spellings!

FYI: The “#” used above makes the search case IN-sensitive and the “%” before and after the
string is a wildcard character that indicates a “contains” type of search. If you wanted to do a
case-sensitive search, omit the “#”; and if you wanted to do a “begins with” search (the default
in FileMaker) then remove the first “%”.

Migrating a FileMaker Solution to Servoy Page 64 of 146

Next we’re going to hook up the script we just created to the radio button list. Navigate to the
radio button control. Select the “tab_similars” form from the “Window” menu – and click on the
gSimilarBy field. Then double-click on the onDataChange property and choose the method
search_similars.

Migrating a FileMaker Solution to Servoy Page 65 of 146

Now you can go into Data mode and add a record of a person with the same last name or from
the same company. Then click on the “Related Contacts” tab, and click on the “Name” or
“Company” option – and you should see the results appear – and the text on the tab will change
as well.

A little later on, we’ll add a few more methods so that this tab will update automatically when the
person’s last name is entered/changed or the company is entered/changed.

We’re done creating forms for the moment. Next up: creating relations and adding the forms we
created to tabpanels to display the data.

Migrating a FileMaker Solution to Servoy Page 66 of 146

Chapter 7 – Building the User Interface – Part 3
Estimated Time To Complete: 30-45 minutes

Now that we have all the forms we’ll need to display in the tabpanels we’ve previously created,
we’ll create some relations (like relationships in FileMaker) between the files – and then place the
forms into tabpanel objects in the various forms.

Since we want the “Main Address” and “Second Address” to show the address for the currently
selected contact – we’ll create two different, but similar relations. Click the Relations tool in the
toolbar – or choose “Relations…” from the “Tools” menu and click the “New” button in the lower
left of the Relations dialog.

By manipulating the source and destination named server connections - Servoy allows you to
create relations between two different databases – even two different databases from two
different vendors residing on two different servers in two different parts of the world!

For our solution – we are going to be using the same source and destination servers – our
contact_mgmt server. We’re going to relate the contact_id and the global field
globals.gConst01 from the contact table to the address table – so we can display the main
address. Set up your “Define Relation” dialog like this:

Migrating a FileMaker Solution to Servoy Page 67 of 146

Now we’re going to add another relation that’s very similar – we’re going to call it
“gConst02_to_address” and rather than specifying globals.gConst01 on the left hand side – we’re
going to use “globals.gConst02”.

Notice that we’re setting up multiple predicates (match fields) – WITHOUT having to create
concatenated calculations (like we would have to do in FileMaker).

Also, the matching doesn’t have to be an equijoin (equals); it can be >, <, >=, <=, != as well.
This capability adds tremendous functionality and power to your relations – and all without
coding SQL statements!

Setup the new relation like this:

OK – we’re ready to add our forms (in the Designer mode) to a tabpanel on the contact_main
screen. Go to the “Window” menu and choose the “contact_main” form. Create a new tabpanel
by clicking on the Tabpanel tool from the toolbar or choosing “Place Tabpanel” from the
“Elements” menu.

Migrating a FileMaker Solution to Servoy Page 68 of 146

Once the “Select tabpanel form” dialog appears – choose the form
“gConst01_to_address.address_main” form and the “gConst02_to_address.address_second” form
(hold down the CTRL key to select discontinuous multiple forms):

Notice that each form is listed a couple of times. Why is that? That’s because there are two valid
relations for our base table (contact) – and there are forms based on those relations (the form
name is after the “.”). Once you’ve selected your forms – you’ll see two little tabs appear inside
the tabpanel.

Migrating a FileMaker Solution to Servoy Page 69 of 146

Click on the individual tabs to change the type that is displayed. Click on the first tab – and
change the text property to “Main Address”. Click on the second tab and change the text
property to “Second Address”. Exit the Designer mode to see the results of your work:

You now have a working solution with a tab for “Main Address” and another tab for “Second
Address” – WITHOUT having to create “fake” tabs.

To clean up the tabpanel a bit – set the following properties:

Object Type Property Value

Transparent TRUE (checkbox CHECKED)
TabOrientation TOP

Top, Right, Bottom, Left
Font Verdana, 10pt, bold
Size 612,125

Tabpanel
Shows addresses

Location 0,329

Anchors

Migrating a FileMaker Solution to Servoy Page 70 of 146

Once you’ve sized the tabpanels – I’ll show you how to add our “Similars” form to this existing
tabpanel. First, CLICK ON THE TABPANEL to “activate” it. Then click on the tabpanel tool, and
select the form called “nonrelated.tab_slimilars”:

You should have three tabs within the tabpanel. In Servoy, these tabs don’t have to be anyplace
special (like within the borders of the tabpanel object itself, etc.).

Select all three tabs and change the following properties:

Object Type Property Value

Background Color = Red: 255, Blue: 255, Green: 255 Tab Objects
Controls the look
and feel

Foreground Color = Red: 153 Blue: 153, Green: 204

Once you’ve done that – you can rename the tab you just placed (nonrelated.tab_similars) – to
“Similars” (don’t worry – we’ll change the text at runtime to display what’s being viewed – just
like in the FileMaker solution).

We now have to setup our phone numbers to display correctly – and automatically add the
related records in our “phone” table.

Migrating a FileMaker Solution to Servoy Page 71 of 146

To do this, we’ll need to set up two more relations:

Migrating a FileMaker Solution to Servoy Page 72 of 146

Earlier, we just placed the “company” field where the phone numbers would go. So, let’s go
ahead and change that.

Click on the “company” field (next to the “Phones” label) – and change the properties of the
field:

Object Type Property Value

Size 138,19
Location 107,198
Anchors Top, Left

Phone Field

DataProvider gconst01_to_phone.phone_data

To change the dataprovider, double-click on the box next to the “DataProvider ” property and
you’ll see the Property Editor dialog. Choose “gconst01_to_phone” from the pop-up list of
relations at the top, then choose the “phone_data” field:

Click OK – and that’s it. Now, copy and paste that phone field – and set the following properties:

Object Type Property Value

Size 140,19
Location 244,198
Anchors Top, Left, Right

Phone Field

DataProvider gconst02_to_phone.phone_data

Migrating a FileMaker Solution to Servoy Page 73 of 146

To change the dataprovider, double-click on the box next to the “DataProvider ” property and
you’ll see the Property Editor dialog. Choose “gconst02_to_phone” from the pop-up list of
relations at the top, then choose the “phone_data” field:

Now, our phone records will be created for us automatically when we enter a value for either or
both phone numbers!

Once we have the basics in place, let’s start to fill in some of the missing pieces.

For example, on the address forms – there is a field for “Address Type”. Let’s create a value list
for that field. From the “Window” menu – choose the form “tab_address_main”. Go into Designer
mode and click on the field next to “Address Type”.

From the Properties panel – double-click the field next to “valuelist” and click the “New” button.

Migrating a FileMaker Solution to Servoy Page 74 of 146

Name the value list “Address_Types” and fill out the dialog like this:

Then change the “displayType” property to “COMBOBOX” – DO check the “editable” property
and set the border to “Empty.” When you have a field formatted as a combobox – and you DO
have the “editable” property checked – the user can choose one of the values in the value list or
type their own. If you have the “editable” property set to false (UNCHECKED) – then the user is
limited to using ONLY values from the value list and they cannot type their own value (like the
pop-up menu in FileMaker).

Use the “Window” menu to navigate to the “tab_address_second” form and click on the field
“address_type”. Set the valuelist property to the “Address_Types” value list and change the
“displayType” to “COMBOBOX”. Also change the border to “Empty.”

Migrating a FileMaker Solution to Servoy Page 75 of 146

In the next chapter, we’ll start doing some scripting on the solution – and explore the various
events that Servoy supports to further enhance our solution.

Chapter 8 – Building the User Interface – Part 4
Estimated Time To Complete: 1 hour

In this section, we’ll add some scripting to the buttons and use some of Servoy’s cool events to
do some neat user interface stuff.

The first thing we’re going to do is hook up the “New”, “Delete” and “Find” buttons at the top of
the screen. So if you don’t have the solution open – go ahead and open it up and go into
Designer mode.

Click on the “New” button and double-click the white space next to the “onAction” property.
You’ll see a listing of methods (scripts) – which should be empty (since we haven’t created any
yet).

We’re going to make a new “global” method – because we are going to have the same buttons
on other forms – and this way we can make a single method that we can re-use on multiple
forms. Click the “New global method” button and name the method “btn_new”:

Migrating a FileMaker Solution to Servoy Page 76 of 146

You should see that a new global method was created:

Servoy has created a new, empty script for you – and linked the script to the button. Don’t worry
about actual code for the method. We’ll add the code in a few minutes. Click the OK button to
dismiss the dialog.

Repeat the process for: the “Delete” button (call the global method “btn_delete”); “Find” button
(call the global method “btn_find”); the Form button (the purple “form” tab at the top – call the
global method “goto_form_view”); the List button (the grey one next to the purple “form” tab at
the top – call the global method “goto_list_view”); the Table button (the grey one next to the
grey “list” tab at the top – call the global method “goto_table_view”); the help button (call the
global method “btn_help”). Then there’s one last button that we need to define a new method
for – and that’s the “Email” button next to the “Email” label. Repeat the above sequence and call
that global method “btn_email”.

Migrating a FileMaker Solution to Servoy Page 77 of 146

OK, now we’ll define what each of those scripts will do. From the “Tools” menu – choose
“Methods…” (CTRL-M) and you’ll see that all of the global methods we’ve created are opened up
and ready for us to enter the code.

You can see a list of all the global methods by clicking the “+” next to the “Globals” tree on the
far left hand side of the dialog – and then clicking on “Methods.”

Migrating a FileMaker Solution to Servoy Page 78 of 146

Click on the Script editor tab “btn_new” and then click on the “currentcontroller” node (below
“Methods” in the “Globals” section). You’ll see a list of functions available where the list of global
methods used to be:

Scroll until you can see “newRecord” in the List section – and double-click it. You should see:
currentcontroller.newRecord() appear in your script. Notice that there is now a little
asterisk (*) next to your method name in the Script editor tab. This means you’ve made changes
to the script – and those changes have not yet been compiled and saved.

Migrating a FileMaker Solution to Servoy Page 79 of 146

Click the “Verify” button in the lower left side of the screen – this will compile and save your
method – and will also remove the asterisk after the name.

While we’re on the subject of controllers and currentcontroller – let me explain what’s going on.

The controller object of a form is the object that “knows” how to create records, delete records,
duplicate records, find, print, sort, etc. But a controller is tied to a specific form. Each form has a
controller object.

The “curren controller” is a global object that will perform an action regardless of which form
you’re on at the time. So, if you’re on the contact_main form – then it will make a new record in
the contact table, if you’re on a form based on the address table – it will create a new record in
the address table and so on.

t

Since we are using a global method called “btn_new” – it also makes sense to use the
currentcontroller – so we don’t have to re-create the same method on a form-by-form basis.

Migrating a FileMaker Solution to Servoy Page 80 of 146

Next, click on the Script editor tab for “btn_find” and we’ll create the code for that method. From
the currentcontroller list of functions – double-click on the “find” function.

You should see currentcontroller.find() appear in your method.

There are two parts to executing a find – just like in FileMaker. In Servoy – you first issue the
controller.find() function (or currentcontroller.find()) to set up the fields you
want to search by (like using “Set Field” in FileMaker); then you perform the find by using
controller.search() (or currentcontroller.search()).

Our button will not actually perform the find – but it will just put the solution into “Find Mode” –
waiting for the user to enter their criteria and hit the enter key (or F3) to actually perform the
search.

The search() function can also take optional arguments where you can specify to clear the last
results (foundset) or to reduce the foundset (do a search within the current foundset).

To extend the found set (add records to the current foundset) – you would show
controller.search(false, false). How do I know this? Simply click on the search
function and you’ll see the syntax in the lower left side of the Method Editor window.

Here’s a really cool feature of Servoy method functions – if you right-click (or click the “move
sample” button at the top of the screen) – you can move a fully commented and working sample
of the code into your method. This is really a handy feature – and one I use all the time.

Migrating a FileMaker Solution to Servoy Page 81 of 146

Now let’s enter the code for the “Delete” button.

Click on the “btn_delete” tab – and double click deleteRecord from the currentcontroller
item of the Globals tree:

This function will delete the current (master) record of whatever the base table is of the form
that’s currently displayed. For example – if you’re looking at the contact_main screen – then it
will delete the contact record you’re looking at. If you were looking at a form based on the
address table, then the “deleteRecord” function would delete an address record.

IMPORTANT NOTE: The deleteRecord() and deleteAllRecords() functions in Servoy
DO NOT prompt the user with a dialog asking “Are you sure?” before the delete – each function
simply deletes the record. So, to prevent the user from accidentally deleting a record – we’re
going to modify our method to display a dialog confirming that they want to delete the record.

I’m going to use this opportunity to show you how to pass parameters into a method and receive
a result back. We’re going to create a global method called “dialog_warning” that will accept the
message to display as the argument, and then we’re going to use that new method in our
“btn_delete” method to show the dialog and check which button they clicked – “OK” or “Cancel”.

Migrating a FileMaker Solution to Servoy Page 82 of 146

Let’s start by creating our new global method “dialog_warning”. Click on the “Methods” node of
the Globals tree, and click the green circle button with the “m” in it (or right-click on the
“Methods” node and choose “Create Global Method”). Name the method “dialog_warning”
(no quotes):

The purpose of this method is to have a global method that will show our warning dialogs – so
we can have a single place to update our code if we need to – rather than having to re-create
the entire dialog sequence every time we need it. To make the global method useful – we need a
way to pass in a different message (depending on our situation) – so we are going to make use
of parameters when calling the method – and then we’re going to use those passed parameters
in our code.

Let’s begin with the basic method of showing a dialog. We’ll use the “dialogs” plug-in to
accomplish this. Yes, you can create your own form and show it as a dialog – but I want to show
you how to do it the “easy” way. Plus, there are several types of dialogs you can display – each
with the OS-specific icon (Warning, Info, Question and Error).

Click on the “Plugins” tree and then click on the “dialogs” plug-in. You’ll see a list of the available
functions for that plug-in:

Migrating a FileMaker Solution to Servoy Page 83 of 146

We’re going to use the “showWarningDialog” function. If you were to just double-click it – you
would see the following in your code:

plugins.dialogs.showWarningDialog(dialog_title, msg, button1,
[button2], [buttonN])

Although this is pretty straight forward – and you can figure out what you’re supposed to put in
each of the parameters – I want you to click on “showWarningDialog” and click the “Move
Sample” button (or right-click on it). When you do that – you’ll see this code:

//show dialog
var thePressedButton = plugins.dialogs.showWarningDialog('Title',
'Value not allowed','OK');

There are a couple of things going on here that I want to point out. First of all, the “//show
dialog” is a comment.

You can use the C and C++ style of commenting in all your scripts. Simply put two slashes (//) at
the starting of a line and type your comments after it. If your comments will span more than one
line, begin with /* and end with */.

For example:

/*
This is a comment that
spans multiple lines.
*/

Now there’s no excuse for not commenting all your scripts!

The next interesting thing in the example is the fact that you can create local variables within
you method that only “live” as long as the method runs. This is really a handy feature! There is
no limit to the number of variables you can create per method, and you don’t even have to
“type” them (i.e. tell the compiler what data type the variable is – integer, string, etc.). What’s
more, you can change the data types within the variables at any time.

Consider the following code snippet (piece of code):

var num = 1;
var num2 = 2;

//num3 will equal 3;
var num3 = var 1 + var 2;

num = 'This is ';
num2 = 'cool! ';

//num3 will equal 'This is cool!';
num3 = var1 + var2;

This is cool!

Migrating a FileMaker Solution to Servoy Page 84 of 146

Getting back to our “dialog_warning” method – move the sample code from
“showDialogWarning” into your method. Now, let’s change the code so it reads:

//show dialog
var thePressedButton = plugins.dialogs.showWarningDialog('Warning!',
arguments[0],'OK', 'Cancel');

The “msg” parameter in the “showDialogWarning” function will be replaced by the FIRST array
argument we pass into the method (in Java and JavaScript, arrays are zero-based, so the first
array element is 0 and not 1). We will also provide two buttons – “OK” and “Cancel” that will be
stored in the local variable called thePressedButton. Now, we need to return the value stored
in thePressedButton to the calling method – so we can decide what to do, based on what
button the user clicks.

NOTE: You can pass any number of parameters in a single call to another script – and you would
access them sequentially.

For example we could say:

var x = myScript(‘Param 01’, 2, ‘Param 03’

Then you could access the passed parmeters with arguments[0] (equals ‘Param 01’),
arguments[1] (equals the number 2), arguments[2] (equals ‘Param 03’).

To return a value – we simply use the keyword “return” (no quotes) followed by the value that
we want to return.

In this case, we want to return the contents of the local variable thePressedButton. So we’ll
modify the script to include return thePressedButton; at the end.

The entire script is:

//show dialog
var thePressedButton = plugins.dialogs.showWarningDialog('Warning!',
arguments[0],'OK', 'Cancel');

return thePressedButton;

Migrating a FileMaker Solution to Servoy Page 85 of 146

OK, add the return command to your script and click the “Verify” button. Your script should
now look like this:

Next, click back on your “btn_delete” Script editor tab – and we’ll enter the rest of the code for
the method.

The entire script should read:

var btn = globals.dialog_warning('Are you sure you want to delete this
record?');

if(btn == 'OK')
{
 currentcontroller.deleteRecord()
}

In the script, we are creating a new local variable called btn to hold the contents of the result
that was passed back from our dialog_warning method (the contents of the local variable
called theButtonPressed). Then we use the JavaScript if statement to see if the user clicked
the OK button – if so, we delete the record. If the text passed back was not 'OK' (case
sensitive) – then we do nothing.

There’s a few very important things to note about the JavaScript if statement:

• The if is case sensitive.
• We use two equals signs == in an if statement (comparison operator).
• The code for what we want to happen if the statement is true, is surrounded by curly

brackets { }.

Migrating a FileMaker Solution to Servoy Page 86 of 146

You can either type in the code above – or better yet – just copy/paste the code into your
btn_delete script:

I know you’re probably dying to see if the script really works or not – so you can switch back to
the Servoy Designer window and try it.

That’s another really cool thing about Servoy: the Method Editor window is non-modal so you can
work on scripts whether you’re in the Designer mode (Layout Mode) or the Data mode (Browse
Mode).

Migrating a FileMaker Solution to Servoy Page 87 of 146

Click the “New” button in Data mode to create a new record:

Then click the “Delete” button to delete the record you just created. You should see the following
dialog box (shown on Windows XP):

Notice that the dialog has the “Warning!” title – and contains two buttons “OK” and “Cancel” –
with the “OK” button appearing first.

Migrating a FileMaker Solution to Servoy Page 88 of 146

Click the “OK” button and notice that you now only have one record:

Pretty cool, huh?

Let’s say you wanted the “Cancel” button to come first, and not the “OK” button. All you have to
do is reverse the order of the parameters in your dialog_warning method (don’t forget to press
the “Verify” button in the lower right after you make the change):

//show dialog
var thePressedButton = plugins.dialogs.showWarningDialog('Warning!',
arguments[0],'Cancel', 'OK');

return thePressedButton;

Migrating a FileMaker Solution to Servoy Page 89 of 146

Now if you create a new record and try to delete it – you should see:

This warning dialog will use the OS-specific icon for the exclamation point. So, if you’re using Mac
OS X (or your customer is!) – they will see the big yellow triangle with Aqua-style buttons. No
graphics to create, nothing else to code. Servoy handles it for you automatically! Nice.

Since we haven’t created forms for the list view, table view and help screens yet – we’ll leave
those methods blank for the time being and come back to fill them out later.

The last method we created earlier was the btn_email method. Servoy comes with a mail plug-in
that allows you to directly send an email (without using your email client) or you can use
application.showURL and the mail will be sent from the local email client. In this case, because
we want our Servoy solution to function like the FileMaker solution, we'll use the showURL
method - and I'll also include the code if you wanted to use the SMTP plug-in.

We'll start out by creating a new form that will let us specify the message and the body of the
email. Before we get to creating the form - we have a choice to make here – we could make a
database to store all the emails so we could view them later. In order to ensure that we get this
tutorial done, we’ll just use global fields.

EXTRA CREDIT: Create a new table called “email” that uses the contact_id to created linked
emails for each contact.

Migrating a FileMaker Solution to Servoy Page 90 of 146

We’ll start by creating some globals: gEmail_Subject, gEmail_Body, gEmail_To,
gEmail_Cc, gEmail_Bcc, gEmail_From (all TEXT globals). Click on the “Variables” section
of the “Globals” tree in the Method Editor – and then either right click – or choose “Create Global
Variable” from the “File” menu.

Once you’re done defining the globals – go back to the Servoy Designer window and create a
new form by choosing “New Form” from the “File” menu.

Migrating a FileMaker Solution to Servoy Page 91 of 146

Choose the “contact_mgmt” connection, no style, and click on the “contact” table. Name the
form “dialog_email” and click OK.

Don’t place any fields on the form (we’re going to start with a blank form) – click the “OK”
button.

Once you have the form – we’re going to change some of the default properties. Click anywhere
on the form itself and modify the form properties in the Properties panel:

Object Type Property Value

ShowInMenu FALSE (UNCHECK checkbox)
Width 350
Scrollbars Vertical: never, Horizontal: never
OnShow New Method (NOT GLOBAL METHOD): on_show
Controller NONE

Dialog Email
Form

TitleText Specify Email
Height 400 Body Part
Background Color: Red = 255, Blue = 255, Green = 255

Migrating a FileMaker Solution to Servoy Page 92 of 146

Rather than having to place all the fields on the form and then go back and reset all the colors
for the type and the field borders, etc. – it’s a lot simpler to copy what we need from our existing
contact_main form. From the “Window” menu – choose contact_main. Then, holding
down the CTRL key (PC) or SHIFT key (Mac) – select the “First Name” label and field all the way
down to the “Company” label and field.

Migrating a FileMaker Solution to Servoy Page 93 of 146

Choose “Copy” from the “Edit” menu, and then click the YELLOW back arrow at the top of the
screen (or choose “dialog_email” from the “Window” menu) to return to the dialog_email form –
and paste the elements.

Now click somewhere on the white form to deselect the objects. Double click the label “First
Name” and then press CTRL-A (PC) or COMMAND-A (Mac) to select all the fields, and type “To:”
(no quotes).

Migrating a FileMaker Solution to Servoy Page 94 of 146

Repeat the above so the labels read: To:, CC:, BCC:, From:

Migrating a FileMaker Solution to Servoy Page 95 of 146

Now we’re going to re-size the labels to make them shorter (so we can scoot all the fields over to
the left). CTRL-click to select all the field labels and then hold down the SHIFT and CTRL keys
and press the LEFT ARROW KEY on your keyboard 3 times. LET GO of the SHIFT key and press
your RIGHT ARROW KEY 3 times.

Now all of your labels are the same size and are all aligned – without clicking and dragging stuff
all over the place.

Migrating a FileMaker Solution to Servoy Page 96 of 146

Next we’re going to make place holders for the Subject and Email Body – by copying/pasting the
“BCC:” and “From:” labels and fields. Change the label of the “BCC:” you just pasted to
“Subject:” and change the text from “From:” to “Email:”

OK, let’s change the fields to reference the globals we created earlier. Double-click on the field
(now called “first_name”) next to the “To:” label and choose the field gEmail_To. Repeat the
process for the remaining fields – matching them up to the globals we created earlier.

Migrating a FileMaker Solution to Servoy Page 97 of 146

When you’re done – you should see something like this:

Next, we’ll arrange the items by moving them to the left, and by making the fields slightly
shorter. Once you’ve done that – click on the gEmail_Body field and make it taller. In the
Properties panel, change the scrollbars property to: Vertical = when needed, Horizontal =
never, and change the displayType property of the gEmail_Body field to TEXT_AREA.

Finally, we’ll add two buttons to the bottom of the layout – one titled “Cancel” and one titled
“Send Email”. On both buttons – set the font property to Verdana, 11pt, Plain.

Migrating a FileMaker Solution to Servoy Page 98 of 146

On the “Cancel” button – make a new method (NOT a global method) for the onAction
property called “btn_cancel” – and hook up the “Send Email” button’s onAction method to
another new method (again, NOT a global method) “btn_send_email”.

Now we’re going to add some code to the methods we created. Open the Method Editor (if the
window is not already open) and click on the Script editor tab btn_cancel. Click on the
“Application” tree and double-click the function closeFormDialog. Replace [closeAll] with
the word true.

Your code should look like this:

application.closeFormDialog(true);

Click the “Verify” button in the lower right of the Method Editor dialog – and then click on the tab
btn_send_mail. Before we enter the code for the sending of the email – we need to decide
how we want our new application to function. Do we want to duplicate the functionality in
FileMaker – and have an email client open and a new message appear; or do we want Servoy to
simply send the email directly without using an email client? I’ll show you the code required for
BOTH approaches – and you can decide which is better in your situation.

Migrating a FileMaker Solution to Servoy Page 99 of 146

We’ll take the approach of opening the email in the local mail client first. To accomplish this,
we’re going to create a mailto URL and then use application.showURL() to actually create
the email.

Here’s the code:

//send email - check to make sure the TO, FROM and SUBJECT are filled out

if(globals.gEmail_To && globals.gEmail_Subject)
{
 // set a local variable to hold a URL string

 var url = 'mailto:' + globals.gEmail_To;

 //replace any '&' characters in the subject and body

 url += '?subject=' + utils.stringReplace(globals.gEmail_Subject, '&',
 '%26');
 url += '&body=' + utils.stringReplace(globals.gEmail_Body, '&', '%26')
 url += '&cc=' + globals.gEmail_Cc;
 url += '&bcc=' + globals.gEmail_Bcc;

 //replace spaces and return characters

 url = utils.stringReplace(url, ' ', '%20');
 url = utils.stringReplace(url, '\n', '%0d');

 application.showURL(url);
}
else
{
 //not everything was filled out

 plugins.dialogs.showErrorDialog('Error!', 'You must specify a TO and
 SUBJECT in order to send the email.', 'OK');
}

Let’s have a look at the code:

First we check to see if the TO and SUBJECT lines are filled out and if they are, then we create a
local variable called url to hold our string. After that, we concatenate (combine) more data to
our url variable:

url += '?subject=' + utils.stringReplace(globals.gEmail_Subject, '&', '%26')

Notice we are concatenating data using the += operator. This is a JavaScript shorthand way to
say: url = url + ‘string’. Handy! We are going to replace any ampersand characters (&)
in the subject and body with the HTTP equivalent (%26) – so that our URL string will work
corrrectly.

After we’ve set all the fields to build one big string – we also need to replace any spaces with
%20 (the HTTP equivalent for space) and any return characters (\n in JavaScript) with %0d – to
make sure all of our data in the email body makes it into our final email.

Finally – after the last else – we will show a dialog to the user – if they forgot to fill out either
the TO or the SUBJECT fields.

Migrating a FileMaker Solution to Servoy Page 100 of 146

When you click the “Email” button – the local email client will launch, and the data will be filled
out automatically:

Alternate Method

If you want Servoy to send the email directly (without using the local email client) then we can
use the mail plug-in. One important note here – you have to specify an outgoing SMTP mail
server in the Preferences in order for this to work. Also, your outgoing SMTP email server must
NOT require user authentication (if your outgoing SMTP server does require user authentication –
you can use the ezSMTP JavaBean as discussed below).

Migrating a FileMaker Solution to Servoy Page 101 of 146

Here’s the code for using the Mail plug-in:

//send email - check to make sure the TO, FROM and SUBJECT are filled out

if(globals.gEmail_To && globals.gEmail_From && globals.gEmail_Subject)
{
 // set a local variable to the result of the

//attempt to send the mail

 var success = plugins.mail.sendMail(globals.gEmail_To,
 globals.gEmail_From, globals.gEmail_Subject, globals.gEmail_Body,
 globals.gEmail_Cc, globals.gEmail_Bcc);

 if(success)
 {
 //everything went OK - so show an info dialog

//and close the form in dialog

 plugins.dialogs.showInfoDialog('Send Email', 'Email successfully
 sent.', 'OK');
 //perform the script “btn_cancel”

btn_cancel();
 }
 else
 {
 //there was an error - so tell them.

 plugins.dialogs.showErrorDialog('Error!', 'There was an error
 encountered when trying to send the email.', 'OK');
 }
}
else
{
 //not everything was filled out

 plugins.dialogs.showErrorDialog('Error!', 'You must specify a TO, FROM
 and SUBJECT in order to send the email.', 'OK');
}

This script looks long – but half of it is comments.

At the top of the script, we check to make sure they have filled in the TO, FROM and SUBJECT
fields:

if(globals.gEmail_To && globals.gEmail_From && globals.gEmail_Subject)
{

If they have, then we set the local variable success to the result of the plug-in command to
send the email:

var success = plugins.mail.sendMail(globals.gEmail_To, globals.gEmail_From,
globals.gEmail_Subject, globals.gEmail_Body, globals.gEmail_Cc,
globals.gEmail_Bcc)

If the variable success is TRUE, then we show a confirmation dialog that tells the user their
email was sent successfully:

plugins.dialogs.showInfoDialog('Send Email', 'Email successfully sent.', 'OK')

Migrating a FileMaker Solution to Servoy Page 102 of 146

If the variable success is NOT TRUE – then an error occurred – so we inform the user with a
warning dialog:

plugins.dialogs.showErrorDialog('Error!', 'There was an error encountered when
trying to send the email.', 'OK')

Finally – going back to our original if statement – if they didn’t fill out the TO or the FROM or
the SUBJECT – then we show them a warning dialog:

plugins.dialogs.showErrorDialog('Error!', 'You must specify a TO, FROM and
SUBJECT in order to send the email.', 'OK')

I know what you’re asking yourself – you’re saying – “Hey, Bob! Didn’t we create a global
method called ‘dialog_warning’ that we could call from other methods? Why didn’t we just use
that global method?” GOOD POINT! However, our global method dialog_warning was
designed to show an “OK” and “Cancel” button. In this case – there was nothing to cancel – it
was just an informational dialog.

EXTRA CREDIT: Create two new global methods called “dialog_info” and “dialog_warning_ok”
that will allow you to re-use them throughout your solution and modify the code to use the global
methods.

When the warning dialog opens – we want it filled out with the name of the contact we’re
currently on – and we want it to clear out anything that was entered in a previous email. To
accomplish this – we’re going to use the onShow property of the form to create a new method
called on_show. Once you’ve double-clicked the onShow property of the dialog_email form –
switch back to the Method Editor and we’ll enter the code. Click on the “+” next to the form
dialog_email.

We want to set the “To:” field (really the gEmail_To global) to the name of the person and their
email address surrounded by brackets. Click on the “dataproviders” object and use a combination
of double-clicking on the field names and typing to come up with the following code:

globals.gEmail_To = first_name + ' ' + last_name + ' <' + email + '>'

Migrating a FileMaker Solution to Servoy Page 103 of 146

Next, we’re going to “blank out” all the rest of the fields:

globals.gEmail_To = first_name + ' ' + last_name + ' <' + email + '>'
globals.gEmail_Cc = ''
globals.gEmail_Bcc = ''
globals.gEmail_From = ''
globals.gEmail_Subject = ''
globals.gEmail_Body = ''

Click the “Verify” button in the lower right to save the method and then you can click the “Close”
button in the lower right to close the method in the Method Editor.

Migrating a FileMaker Solution to Servoy Page 104 of 146

Now that we have the code to make the warning dialog function – let’s add out the code that will
let us show the dialog. We already have a global method called “btn_email” – so let’s click on
that tab in the Method Editor and enter the code.

Click on the “Application” tree and double-click showFormInDialog.

You’ll see this code inserted into your method:

application.showFormInDialog(form, [x], [y], [width], [height],
[dialog_title], [resizable], [showTextToolbar], [closeAllOnCloseButton]);

The showFormInDialog function will open the form we just created in a modal dialog. You can
also optionally specify the x (horizontal) and y (vertical) position of the dialog; in addition to the
height, width, and title of the dialog; whether the dialog can be resized; whether or not to show
the text toolbar; and whether clicking the “X” in the upper right of the dialog will close all open
forms in that dialog (more on that later).

If you were to try the “mode sample” option of the same function – you’d see:

//Show the specified form in a dialog, on default location and size (x,y,w,h)
//application.showFormInDialog(contacts);
//Note: this call is blocked until the dialog is closed
//Show the specified form in a dialog, on specified location and size with
custom title, not resizable but with text toolbar,
//And if there are multiple forms open in the dialog the Close button should
close them all at once
application.showFormInDialog(forms.contacts,100,80,500,300,'my own dialog
title',false,true,true);

Migrating a FileMaker Solution to Servoy Page 105 of 146

For our code – we want the dialog to show in the middle of the screen; with the size we’ve
specified for the form itself (in the form width and the body part height); we don’t want the
dialog to be resizable; nor do we want the text toolbar to show (because they’re not formatting
text in our email); and we really don’t care if all the forms are closed when the “X” is clicked. SO,
we can modify our code to read:

application.showFormInDialog(forms.dialog_email, -1,-1,-1,-1, 'Send Email',
false, false, true)

The -1,-1,-1,-1 tells the function to use the default x and y position (the center of the
screen) and to make the dialog window the size of the form. Once your code reads like the
above, click the “Verify” button – and let’s try it.

Switch back to the Designer window – and go to the contact_main form. Go into Data Mode –
if you're in Designer Mode, use CTRL-L (PC) or COMMAND-L (Mac) or click the Designer tool in
the toolbar – and click the email button. You should see your new dialog appear:

Try clicking the “Send Email” button – and you should see the error dialog:

Migrating a FileMaker Solution to Servoy Page 106 of 146

Now click the “OK” button and the dialog should dismiss.

Congratulations – you’ve created your first custom dialog!

NOTE: You’ll probably get an error if you try to send the email – probably because you didn’t
specify your outgoing mail server in the preferences. Choose “Preferences” from the “Edit” menu,
click on the “Mail” tab – and enter your outgoing SMTP mail server.

ALSO NOTE: The Mail plug-in that ships for free with Servoy does NOT support user
authentication – so if you need to authenticate before connecting to your outgoing server – you
can use a $35 JavaBean called EZsmtp (http://www.ezjavabeans.com/ezsmtp/) that will support
it. For an example on how to use the EZsmtp bean – check out Servoy Magazine –
http://www.servoymagazine.com.

The last thing we’re going to do in this section is to replicate some functionality that’s unique to
FileMaker – namely the automatic creation of related records.

In Servoy – when you click or tab into a related field (and a related record doesn’t already exist)
and then you exit the related field, a record is created for you automatically (just like in
FileMaker). However, if you use another form in a tabpanel, portal or list – you have to create the
related record before the user can enter data into it.

In our case – the user can be either on the “Main Address” tab or the “Second Address” tab –
and they can click into any of the fields (street, city, state_province, postal_code or
address_type) and begin entering data.

How do we solve this problem?

It’s really quite easy – we’ll create a new method called create_related_record in which
we’ll check to see if the related record exists or not – if not, we’ll create it. “But Bob”, you’re
probably saying to yourself, “how will we trigger the script to fire in the first place?” AH! Good
question.

Servoy, unlike FileMaker, is event-driven – so we can add the method to the onFocusGained
event property on each of the fields on the form. That way, no matter which field they click into
to begin entering data – a related record will be created automatically.

Let’s start by creating the method. Click on the “tab_address_main” form in the Method Editor,
then click the green “M” button (or right-click on the form name) to create a new method. Name
the method create_related_record:

Migrating a FileMaker Solution to Servoy Page 107 of 146

http://www.ezjavabeans.com/ezsmtp/
http://www.servoymagazine.com/

The code for the script is:

//see if the related record exists
if(!forms.contact_main.gconst01_to_address.address_id)
{
 //if not, create one and set the focus back to
 //the field they clicked in
 var fieldName = application.getMethodTriggerElementName();
 forms.contact_main.gconst01_to_address.newRecord();
 elements[fieldName].requestFocus();
}

First, the if statement looks through the relationship on the main contacts screen (the one we
used to display the tab_address_main form) to see if there is already an address_id. The
exclamation point before the field reference means “not” – so the if statement is saying “if there
isn’t a related record with the address_id filled out, THEN do the following.”

We then store the NAME of the field that triggered the script using into a variable called
fieldName. Next we create a new record using the relationship gconst01_to_address – this
will automatically fill out the contact_ID and the address_num (the two fields used in the
relation). Finally, we use elements[fieldName].requestFocus() to put the cursor back
into the field that triggered the method – otherwise the cursor would just “disappear” even
though the user clicked into a field.

Once you have the code entered (or you copied/pasted it) – click the “Verify” button to save
the method.

Now, select the entire method, copy it, and click on the “tab_address_second” form. Create a
new method called “create_related_record” and paste the code in.

Migrating a FileMaker Solution to Servoy Page 108 of 146

Then, simply change if(!forms.contact_main.gconst01_to_address.address_id) to
if(!forms.contact_main.gconst02_to_address.address_id) and change
forms.contact_main.gconst01_to_address.newRecord() to
forms.contact_main.gconst02_to_address.newRecord() and click the “Verify” button.

Now, back in the Servoy Designer window – use the “Window” menu to navigate to the form
called “tab_address_main.” Click on the “street” field – double-click next to the “onFocusGained”
property.

Migrating a FileMaker Solution to Servoy Page 109 of 146

Choose the create_related_record method we created.

Repeat this process for all the rest of the fields on this form (street, city, state_province,
postal_code, address_type). When you’re done – use the “Window” menu to switch to the form
“tab_address_second” and do the same thing for each of the fields (street, city, state_province,
postal_code, address_type).

To try out your new functionality – switch to the “contact_main” form, go into Data mode and
click in the “street” field on the “Address Main” tab. You’ll see that you can enter data and it will
be automatically saved.

Migrating a FileMaker Solution to Servoy Page 110 of 146

Try the same thing on the “Address Second” tab – but this time click in the “Address Type” field
and choose a value. That wasn’t so tough, was it?

Just for the sake of completeness – the “Swap with” button on each form shouldn’t show up
unless we have a record to “swap” with (i.e. swap the main address with the second address).

In Servoy – we can hide/show items automatically. To do this, we’ll create a simple method that
we’ll attach to each of the address form’s “onShow” event property. The onShow event will
trigger just before the form is drawn on the screen. Because we are using a tabpanel to display
the forms, our method will be triggered every time we switch tabs.

Migrating a FileMaker Solution to Servoy Page 111 of 146

In the Method Editor screen, click on the tab_address_main form and create a new method
called on_show:

We’re going to make sure that there is a main address record as well as a second address record
and if so, then show the button and label – otherwise we will hide them.

Here’s the code:

if(forms.contact_main.gconst01_to_address.address_id &&
forms.contact_main.gconst02_to_address.address_id)
{
 elements.lbl_swap.visible = true;
 elements.btn_swap.visible = true;
}
else
{
 elements.lbl_swap.visible = false;
 elements.btn_swap.visible = false;
}

Pretty straight-forward! If you don’t see all the elements displayed above under the “elements”
node of the tab_address_main form – this means that you didn’t fill out the NAME property of
all the objects. Only objects with the NAME property filled in will show up in the Method Editor.
This is to reduce the potential “clutter” that would happen if Servoy just automatically listed ALL
items on your form. You only need to fill the “name” property – in the form's Properties panel –
for those objects that you’re going to want to control (change the color, size, position,
show/hide, etc.) during runtime.

Now, copy your method code, switch to the tab_address_second form, create a new method
called on_show and just paste the code there. Because we are checking for the existence of
both records in the if statement, all you need to do is click the “Verify” button and you’re done.

Migrating a FileMaker Solution to Servoy Page 112 of 146

The LAST piece of business we need to take care of is what happens when the button is actually
clicked (we know it will be visible only when there are both addresses). Click on the Methods
node of the Globals tree and create a new global method called btn_address_switch:

Click on the Variables node of the Globals tree, and create a new global TEXT field called
“gTempText”:

Here is the code we’re going to use for the “swap” button method:

//set global to street 1
globals.gTempText = forms.contact_main.gconst01_to_address.street;

//set street 1 to street 2
forms.contact_main.gconst01_to_address.street =
forms.contact_main.gconst02_to_address.street;

//set street 2 to the global value
forms.contact_main.gconst02_to_address.street = globals.gTempText;

//repeat for other fields
globals.gTempText = forms.contact_main.gconst01_to_address.city;
forms.contact_main.gconst01_to_address.city =
forms.contact_main.gconst02_to_address.city;
forms.contact_main.gconst02_to_address.city = globals.gTempText;

globals.gTempText = forms.contact_main.gconst01_to_address.state_province;
forms.contact_main.gconst01_to_address.state_province =
forms.contact_main.gconst02_to_address.state_province;
forms.contact_main.gconst02_to_address.state_province = globals.gTempText;

globals.gTempText = forms.contact_main.gconst01_to_address.postal_code;
forms.contact_main.gconst01_to_address.postal_code =
forms.contact_main.gconst02_to_address.postal_code;
forms.contact_main.gconst02_to_address.postal_code = globals.gTempText;

Migrating a FileMaker Solution to Servoy Page 113 of 146

globals.gTempText = forms.contact_main.gconst01_to_address.address_type;
forms.contact_main.gconst01_to_address.address_type =
forms.contact_main.gconst02_to_address.address_type;
forms.contact_main.gconst02_to_address.address_type = globals.gTempText;

currentcontroller.saveData();

In this method – we’re simply storing the data in the related main address into our global
gTempText; then we’re setting the value of the related main street to the value of the related
second address; and finally setting the related second address to the data stored in the global.
We need to do the same thing for each of the fields on the form.

The final step currentcontroller.saveData() will then save the data, and have the effect
of exiting the fields.

You don’t have to type all of the code above – in fact, I only typed the comments and the equal
signs in the code. Simply click on the contact_main form and click the “+” next to the
relations item. Click on gconst01_to_address and you’ll see the list of fields. Double-click
the field to add it to your form. You can use this technique of alternating between
gconst01_to_address and gconst02_to_address to create the method.

The last thing we’re going to do in this chapter is to hook up the global method to our buttons
and to set the onShow property of the address forms to show/hide the switch address (“Swap
with”) button.

Switch to the tab_address_main form from the “Window” menu – and double-click the empty
space next to the onShow property in the Properties panel. Choose the form method on_show.
Next, click on the label object (not the rectangle – but the object on top of the rounded
rectangle) and set the onAction property to the global method btn_switch_address.

Now switch to the form tab_address_second and do the same as above – set the onShow
method for the form and the onAction method for the button.

When you’re done – switch to the contact_main form and try it out. You can create a new record,
fill in a Main Address and a Second Address, then click the “Swap with” button and they should
reverse. Click it again (or click the button on the other tab) and the addresses will switch back.

In the next section, we’ll create the list view, table view, and the help forms - and then hook
them up to the interface with some new (simple) methods.

Chapter 9 – Building the User Interface – Part 5
Estimated Time To Complete: 1 hour

Now we’ll create the list view, the table view and hook up the navigation. Open the Servoy
solution (if it’s not already open), navigate to the contact_main form and go into the Designer
Mode – press CTRL-L (PC) or COMMAND-L (Mac); or choose “Designer” from the “Tools” menu.

Our list view and table view will use the top navigation – so rather than going through the hassle
of re-creating them – we’ll simply duplicate the form and modify it to suit our needs.

Migrating a FileMaker Solution to Servoy Page 114 of 146

BEFORE WE DUPLICATE the contact_main form – let’s make sure that we’ve set things up
properly. Click on the first_name field and MAKE SURE that the name property reads: first_name
and the TEXT property reads: If it doesn’t, fix it now! Same for each of the other fields:

Field Name Property Text Property
first_name first_name First
last_Name last_name Last
title title Title
company company Company
gconst01_to_phone.phone_data phone_1 Phone 1
gconst02_to_phone.phone_data phone_2 Phone 2
email email Email
notes notes Notes
image_data image_data Image

Once you’ve set all the name and text properties - choose “Duplicate Form” from the “File” menu
– and name this form contact_list:

Once you click the “OK” button – you’ll have a duplicate form – all ready to go. Before we change
anything – we’ll duplicate this form again for our table view. Choose “Duplicate Form” again from
the “File” menu – and call this form contact_table:

Migrating a FileMaker Solution to Servoy Page 115 of 146

Choose “Duplicate Form” again from the “File” menu – and call this form
contact_table_data:

We’ll do the table_view_data first – since it’s the easiest. Delete EVERYTHING on the form –
except for the actual fields themselves:

Migrating a FileMaker Solution to Servoy Page 116 of 146

You can then delete the image_data field as well:

Click on the white part (the Body) of the form, and change the following properties:

Object Type Property Value

ShowInMenu FALSE (UNCHECK checkbox)
Scrollbars Vertical: never, Horizontal: never
View Table view (locked)

Contact Table

TitleText Table View Data

You should arrange the fields in the order you want them appear. Servoy will try to “draw” the
table view based on the physical layout of the columns (from left to right, top to bottom) and will
make the default width of the column the width of the field itself.

Migrating a FileMaker Solution to Servoy Page 117 of 146

Let’s re-arrange the fields and make them shorter, so we can see more of them in Data mode:

When you come out of Designer mode (into Data mode) – you can see that we created a table
that has labels of each column based on the TEXT property of each field:

Migrating a FileMaker Solution to Servoy Page 118 of 146

Notice that the order of the fields in the table view is the same as the fields you just arranged in
Designer mode for this form.

You can resize and re-order the columns, and even edit the data. If you’re not happy with the
order of the fields – simply re-order them (left to right) and the default order will change. Each
user can move the fields into a different order (that lasts as long as they have the Client open,
and then defaults back to the order you designed next time the Client is opened); and they can
click the header to sort the data – all without any programming on your part. Cool!

Now we’ll show this table view on our contact_table form using a tabpanel – but first, we
have to prepare the contact_table form.

Migrating a FileMaker Solution to Servoy Page 119 of 146

Navigate to the contact_table form by choosing it from the “Window” menu and then delete
EVERYTHING below the %%first_name%% %%last_name%% label at the top:

Now we need to add a header part so our buttons on the top will show up. Choose “Define Parts”
from the “Elements” menu or select the Parts tool in the toolbar.

Migrating a FileMaker Solution to Servoy Page 120 of 146

Click on the “Header” part in the “Available” list on the left and then click on the “>>”
move button:

Click the “OK” button.

Migrating a FileMaker Solution to Servoy Page 121 of 146

You’ll see that a header part has been added to your form:

Click on the gray label of the “Header” part and set the following properties:

Object Type Property Value

Height 109 Header Part
Background Color: Red = 255, Blue = 255, Green = 255

Migrating a FileMaker Solution to Servoy Page 122 of 146

Now we can add the tabpanel to display our table view. Click on the Tabpanel tool in the toolbar
or choose “Place Tabpanel” in the “Elements” menu. From the list of available forms, choose
nonrelated.contact_table_data:

Click “OK”, and then place the tabpanel just below the Header part – make the tabpanel the
same height and width as the rest of the form:

Migrating a FileMaker Solution to Servoy Page 123 of 146

With the tabpanel still selected, set the tabOrientation property to HIDE; set the location
to 0,111; set the size to 612,343 and set the anchors property to top, right, bottom,
left. Exit the Designer mode and you’ll see your table view appear:

We need to clean up a couple of the graphics and then we’ll be done with the table view. Go
back into Designer mode and click on the purple form view button.

Migrating a FileMaker Solution to Servoy Page 124 of 146

Change the imageMedia property to btn_grey_form.jpg:

Change the rolloverImageMedia to btn_grey_form_over.jpg:

Migrating a FileMaker Solution to Servoy Page 125 of 146

Next, click on the grey table view button (the furthest on the right – to the left of the Help
button) and change the imageMedia property to btn_purple_table.jpg:

Change the rolloverImageMedia to btn_purple_table_over.jpg:

Migrating a FileMaker Solution to Servoy Page 126 of 146

Your form should look like this (in Data Mode):

Now that we have the table view done – let’s work on the list view. Switch to the contact_list
form via the “Windows” menu and enter the Designer mode.

Migrating a FileMaker Solution to Servoy Page 127 of 146

This time, we’re going to delete everything below the %%first_name%% %%last_name%% label
– EXCEPT the email button and the image_data field:

Next, we’ll change the font size of the merge text labels and move the email icon up to the top.

Click on the %%first_name%% %%last_name%% label and change the font to Verdana,
12pt, bold; change the size to 320,20; and the location to 56,88.

Click on the %%company%% label and change the font to Verdana, 10pt, bold; change the
location to 371,88.

Click on the email button icon and change the location to 24,88.

Migrating a FileMaker Solution to Servoy Page 128 of 146

We’re now going to add a couple of other merge labels to the form.

Click on the %%company%% label and copy/paste. WITHOUT DESELECTING THE OBJECT, hold
down the CTRL key and press the DOWN arrow key once, and the LEFT arrow key once. This will
move the object in 10 pixel increments down and to the left.

Now let go of the CTRL key and press the UP arrow key FIVE times (you can also just set the
location to 371,103).

Double-click the text property and change it to %%title%%; and change the font to
Verdana, 10pt, regular and the horizontalAlignment to RIGHT.

Hold down the CTRL key (PC) or SHIFT key (Mac) and select both the %%company%% label and
the %%title%% label. With the CTRL key down – click the LEFT arrow key 8 times (or set the
location of the %%company%% label to 291,88 and the location of the %%title%% label to
291,103).

Click on the image_data field and set the size to 78,76 and the location to 524,88:

Migrating a FileMaker Solution to Servoy Page 129 of 146

Now click on the %%first_name%% %%last_name%% label and copy/paste. Double-click the
text property and change it to %%gconst01_to_phone.phone_data%%. Set the location
to 56,103; and set the foreground color to: Red=102, Green=102, Blue=153.

We also want to show the notes field below the phone number – and since the field can hold
multiple lines of data, we have to make a decision on what kind of object we’re going to use to
display the field. If we use a label object – we would have to create a calculation that would
return HTML with
 in place of the line returns – since labels can only show a single line of
data without being formatted as HTML.

However, we can place a field on the form – and set it to non-editable – and not have to create
the calculation. In this case – we’ll choose the field option.

Migrating a FileMaker Solution to Servoy Page 130 of 146

Click the “Place Field” tool in the toolbar or choose “Place Field” from the “Elements” menu; and
choose Notes from the list (UNCHECK “Place labels”):

Click on the newly placed field and CHECK the transparent property; UNCHECK the editable
property; set the font to Verdana, 10pt, Regular; set the location to 56,121; set the
size to 450,44; set the foreground color to: Red=153, Green=153, Blue=153; and set the
border to EMPTY.

Click on the gray label of the “Body” part and set the height property to 170.

Next we’ll change the navigational graphics on this form. Click on the purple form button and do
what you did on the contact_table form:

Change the imageMedia property to btn_grey_form.jpg; and the rolloverIageMedia
property to btn_grey_form_over.jpg. Click on the list navigation button (the second one)
and change the imageMedia property to btn_purple_list.jpg; and the
rolloverIageMedia property to btn_purple_list_over.jpg.

Migrating a FileMaker Solution to Servoy Page 131 of 146

We have to do one more thing before we’re finished with this list view form.

Because we’re using merge fields to display the data (and not “field” objects) – if we click on the
“Find” button – the only field we can search by is the “notes” field. So, we’re going to make a
new method that will take us to the contact_main form and then perform the btn_find
global method. Click on the “Find” button and double-click the onAction property. The button is
now hooked up to the global method btn_find.

Click the “New global method” button and name the new method btn_goto_contact_find.

Migrating a FileMaker Solution to Servoy Page 132 of 146

Open the Method Editor by choosing “Methods…” from the “Tools” menu.

Here’s the code for the btn_goto_contact_find method:

//show the contact_main form
forms.contact_main.controller.show();

//perform the global btn_find method
globals.btn_find();

Don’t forget to click the “Verify” button in the lower right of the Method Editor dialog. When you
exit Designer mode (into Data mode) you should see something like this:

Now we’ll create the “Help” form. We’ll start by navigating to the contact_main form via the
“Window” menu.

Migrating a FileMaker Solution to Servoy Page 133 of 146

Choose “Duplicate Form” from the “File” menu and call the new form “help”.

DELETE everything below the %%first_name%% %%last_name%% label. Delete the
%%company%% label. Double-click the %%first_name%% %%last_name%% label and change
the text to “Help for the Contact Management Solution” (you’ll need to change the size property
of the label to 440,20 for it all to show up).

Delete the New, Delete and Find buttons at the top and change the purple forms button:

Migrating a FileMaker Solution to Servoy Page 134 of 146

Set the imageMedia to btn_grey_form.jpg

Set the rolloverImageMedia to btn_grey_form_over.jpg

Migrating a FileMaker Solution to Servoy Page 135 of 146

Set the method attached to the onAction property to the global method goto_form_view.

You can now do a couple of different things with regard to the help text. You can create a label
with the instructions; or create a global variable – when the solution loads, you can set the
contents of the global to the instructions, etc.

In this case, we’re going to put the text into a label. Place a new label on the form by clicking on
the “Place Label” tool in the toolbar or choosing “Place Label” from the “Elements” menu. Set the
verticalAlignment to TOP, the horizontalAlignment to LEFT, the size to 586,329
and the location to 14,113. Then double-click the text property.

Migrating a FileMaker Solution to Servoy Page 136 of 146

Enter or paste the text you want to use for the help – and then click the “Use html” checkbox.
Select all the text – CTRL-A (PC) or COMMAND-A (Mac) – choose Verdana 10pt, and format the
text as you want.

Then click the “OK” button. Now all that’s left to do is to add some code to the global method
btn_help that we created earlier.

Open the Method Editor and double-click on the global method btn_help. Click the “+” next to
the help form – and double-click the show function from the controller object.

Your code should look like this:

forms.help.controller.show()

Migrating a FileMaker Solution to Servoy Page 137 of 146

Click the “Verify” button in the lower right.

WHEW! We’re done with the layout of all the forms. In the final steps – we’ll hook up the
navigation buttons and then we’re FINISHED!

Navigate back to the contact_main screen via the “Windows” menu and click on the grey form
button (to the left of the purple list button) – double-click on the onAction property and choose
the global method goto_form_view.

Click on the grey table button (to the right of the purple list button) – double-click on the
onAction property and choose the global method goto_table_view.

Now switch to the contact_table form and click on the grey form button, double-click on the
onAction property and choose the global method goto_form_view.

Click on the grey list button (to the left of the purple table button) – double-click on the
onAction property and choose the global method goto_list_view.

Open the Method Editor (select the “Methods…” tool from the toolbar or choose “Methods…”
from the “Tools” menu) and click on the Methods node of the Globals tree. Open up the methods
goto_form_view, goto_list_view, and goto_table_view. Click on the Script editor tab
goto_form_view: click on the controller object on form contact_main (click the “+” next to
the contact_main form if you can’t see the controller object) – and then double-click the
show function.

Your code should read:

forms.contact_main.controller.show()

Migrating a FileMaker Solution to Servoy Page 138 of 146

Click on the tab goto_list_view; click on the controller object on form contact_list (click
the “+” next to the contact_list form if you can’t see the controller object) – and then
double-click the show function. Your code should read:

forms.contact_list.controller.show()

Migrating a FileMaker Solution to Servoy Page 139 of 146

Click on the tab goto_table_view; click on the controller object on form contact_list
(click the “+” next to the contact_table form if you can’t see the controller object) – and
then double-click the show command.

Your code should read:

forms.contact_table.controller.show()

Now all of the navigation buttons are hooked up!

We have just a couple of more things to finish up. For the Related Contacts tab – we need to add
a method to trigger that will update the displayed data when:

• The last name field is entered or changed
• The company field is entered or changed
• The city on the “Main Address” tab is entered or changed
• When we change contact records

To accomplish this – we’re going to create a new global method that will simply trigger the
search_similars method (on the tab_similars form). We will then attach the script to the
onDataChange property of the fields and to the onRecordSelection property of the
contact_main form.

Let’s start by creating the method. In the Method Editor – click on the Methods item of the
Globals tree – and create a new global method called update_related_contacts:

Migrating a FileMaker Solution to Servoy Page 140 of 146

Here’s the code we’re going to use:

if(!globals.gSimilarBy)
{
 //the radio button is empty - so set it to Company
 globals.gSimilarBy = 'Company';
}

//perform search_similars method
forms.tab_similars.search_similars();

Now, navigate to the contact_main form – and click the last_name field. Double-click the
onDataChange property in the Properties panel and choose the update_related_contacts
global method:

Migrating a FileMaker Solution to Servoy Page 141 of 146

Do the same thing for the Company field, and then click on the white part (the Body) of the
contact_main form (so you can see the form properties). Set the onRecordSelection property
to the global method update_related_contacts.

In the tabpanel – double-click the “Main Address” tab that’s inside the tabpanel (and you’ll be
automatically shown the tab_address_main form). Set the onDataChange property of the
“city” field to the global method update_related_contacts.

Navigate to the tab_similars form and set the onShow property of the FORM to the global
method update_related_contacts.

Now the contents of our Related Records tab will change automatically when:

• The last name field is entered or changed OR
• The company field is entered or changed OR
• The city on the “Main Address” tab is entered or changed OR
• When we change contact records

Migrating a FileMaker Solution to Servoy Page 142 of 146

The last thing we’re going to do in this tutorial is setup some solution properties. Choose
“Solution Settings” from the “File” menu:

Enter “Contact Management” as the title, and choose contact_main as the first form.
Click “OK” – and that’s it.

Click through your solution – add and delete records, add and delete images, click between the
tabs and test out your new solution. When you’re satisfied that everything is working the way
you want – then I always make an exported version of the solution as a backup.

To make an exported backup – choose “Repository…” from the “File” menu. When you’re asked if
you want to close the current solution – click “OK.”

Click on “+” next to the solution “contact_mgmt”, click on the active release (the active release is
the one with the little black “A” on it – usually the top one) and click the “Export to File” button.

Migrating a FileMaker Solution to Servoy Page 143 of 146

You should see the Export solution dialog:

You can choose to export sample data with your solution; and whether or not you want to create
a new release after the export is complete. If you choose to create a protected solution – you will
be asked to enter a password. Once someone else imports that solution into their repository –
and they try to go into Designer mode – or try to edit methods in the Method Editor – they will
be prompted for the password. If they don’t know the password, then they won’t be able to open
the Method Editor or enter Designer mode.

Migrating a FileMaker Solution to Servoy Page 144 of 146

Migrating a FileMaker Solution to Servoy Page 145 of 146

Click the “Start” button and choose a location to save your solution (I keep a “Servoy Solutions”
folder on my desktop) – and name the solution (I use the solution name + “_x” where x is the
version: i.e. contact_mgmt_v3.servoy) – and DO keep the .servoy extension.

The native file format of Servoy is .zip.

Yep, a plain ol’ zip file.

Inside the .zip file are XML files that describe your solution along with the binary data of all the
images you’ve imported. Our solution (without data) is a “whopping” 100K. Yep, 100K – and half
of that are the graphics we used!

Pretty cool, huh? You can now send this solution to others – import it into other Servoy
repositories running ANY SQL database (Oracle, MS SQL Server, MySQL, etc.) – and it will work –
all without ANY re-coding on your part.

Conclusion

We’ve covered a lot of ground in this tutorial! This should give you a good overview of how
Servoy works - and I hope that you’ve been inspired to try converting your own solution to
Servoy.

I welcome all your feedback and comments: bob@clickware.com.

Acknowledgements

Many thanks to Marc Norman and Bob Cart for their tireless editing efforts! Thanks guys, I owe
you a 7-up and Flat Tire Ale (respectively).

Copyright ©2004 ClickWare, Inc.. All Rights Reserved. All trademarks and registered trademarks are the properties of
their respective owners.

mailto:bob@clickware.com

